

Automating the Automation

Enrique Blanco (CERN) on behalf of the UNICOS team

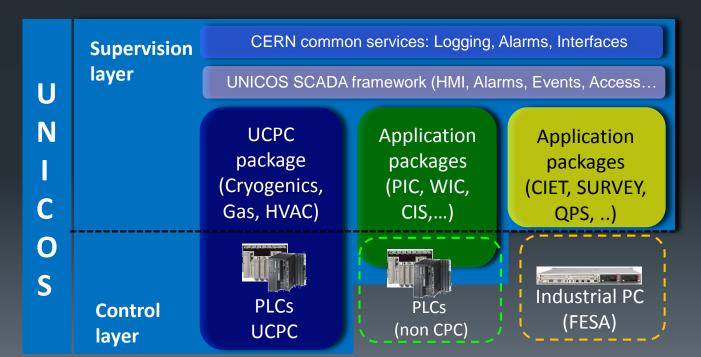
2

Outline

UNICOS foundation

- Device model
- Methodology
- Automatic control systems generation
- Conclusions

A look to the past


[1998] UNICOS (UNified Industrial Control System) was born at CERN as a need to develop the LHC cryogenics control system The goal was to create an industrial control system covering the upper two layers of the typical **automation** pyramid.

UNICOS

 UNICOS is a framework to create industrial control applications UNICOS CPC: A basic package (Continuous Process Control) to develop integrated process control applications.

UNICOS-CPC framework basics

- A collection of standard devices types (objects)
 - CPC: Generic library covering most of the equipment of continuous processes
- Methodology
 - Modeling of the process by control modules based on a decomposition method (ISA-88)
 - A formalized and standard way of programming the specific process logic

Operation

- Standard HMI allowing an homogenized operation (navigation, trends, access control...)
- Suite of standard CERN systems: Alarms, DB Logging, Middleware communications...
- Diagnose capabilities (process alarms, events, system integrity...)
- Versatile suite of development tools (UAB: UNICOS Application Builder)
 - Automatic instantiation of the devices and logic code

5

Industrial Controls & Safety Systems Beams Department ICALEPCS'17, Oct17 E. Blanco - CERN

UNICOS CPC applications scope

Process Control

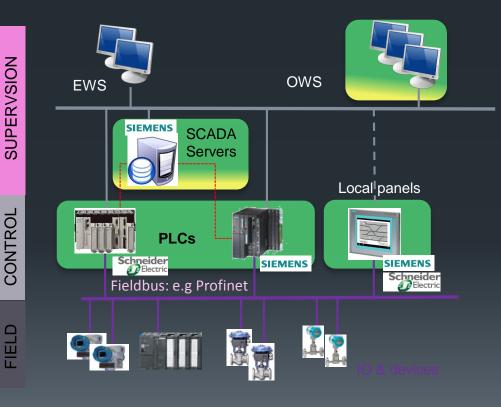
- LHC Cryogenics
- C&V: Cooling and HVAC projects
- LHC Gas Control System
- AWAKE plasma cell

Interlocks

- LHC Collimator Temperature Interlocks
- LHC Test benches facilities
- FAIR magnets testbenchs interlocks

Motion

- HTS winding machine
- ATLAS big wheels
- LHC elevators
- AMS beam test servo systems


Vacuum

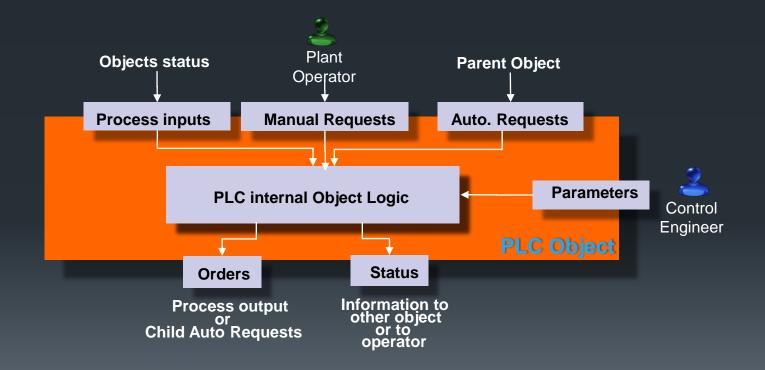
- LHC Detector vacuum: ATLAS, CMS
- REX vacuum control
- ISOLDE Vacuum control

Industrial Controls Components

- UNICOS relies on industrial offthe-shelf components
 - SCADA: WinCC OA
 - Touch panels: Siemens, Schneider
 - PLCs: Siemens, Schneider, Codesys-based

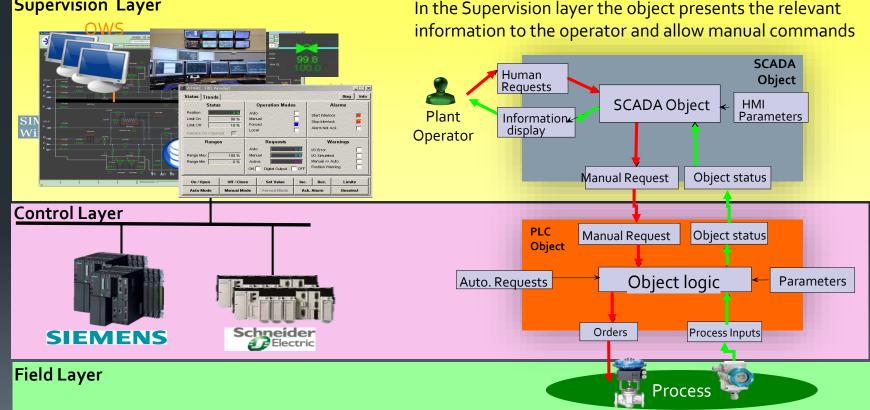
Outline

ICALEPCS'17, Oct17 E. Blanco - CERN



- UNICOS foundation
- Device model
- Methodology
- Automatic control systems generation
- Conclusions

UNICOS CPC Object Model



10 UNICOS

Objects & Layers Integration

Supervision Layer

Not only a bunch of objects

- A well defined set of standard device types (objects), modeling most of the equipment and needs of continuous processes and the relationships between them.
 - I/O Objects
 - Digital I/O
 - Analog I/O
 - Field Objects
 - OnOff
 - Analog, AnaDig
 - Local
 - AnaDO

- Control Objects
 - Controller
 - Alarms
 - Process Control Object
- Interface Objects
 - Parameter (Digital, Word, Analog)
 - Status (Word, Analog)
- Motion
 - Stepping Motor
 - Encoder
- UNICOS CPC provides libraries (control and supervision layers)
- A formalized methodology to:
 - Define the control units of a process (ISA-88 standard: Batch processes)
 - Programming the specific process logic for those units

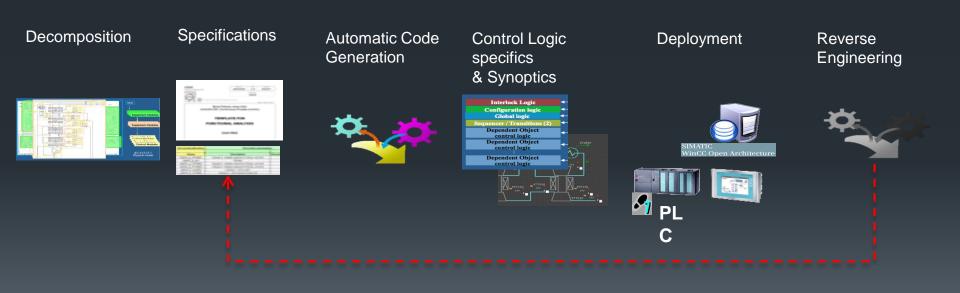
A flavor in objects: Field objects

- Functionality
 - Model the real field equipments (e.g. pumps, valves...)

Types

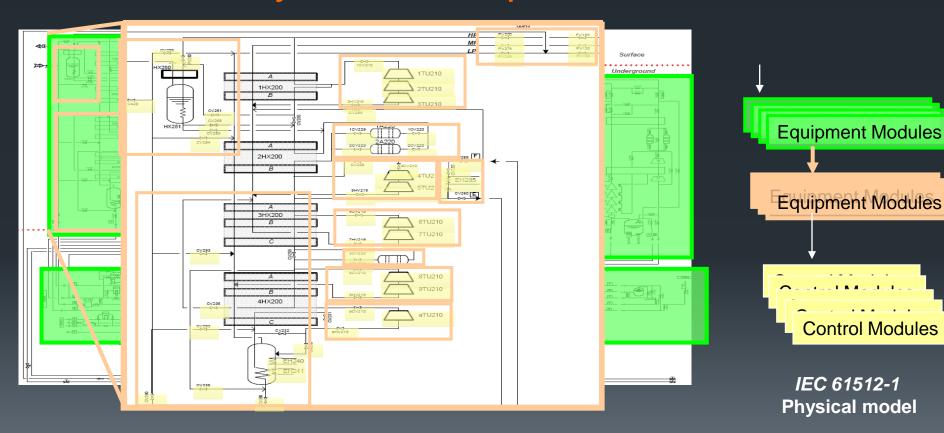
- OnOff: Binary Objects (e.g. on/off valve, motor, pump)
- Analog: Analog objects (e.g. control valve, heater)
- Anadig: Analog inputs and Digital outputs objects (e.g. valves/heaters controlled by on/off pulses)
- AnaDO : Similar functionality of an OnOff + Analog object (Motor with VFD, Thyristor, Heater, etc.)
- Local: Field localized objects : (e.g. manual valve)

Outline


- UNICOS foundation
- Device model
- Methodology
- Automatic control systems generation
- Conclusions

Industrial Controls & Safety Systems Beams Department ICALEPCS'17, Oct17 E. Blanco - CERN UNICOS

14


UNICOS Engineering life cycle

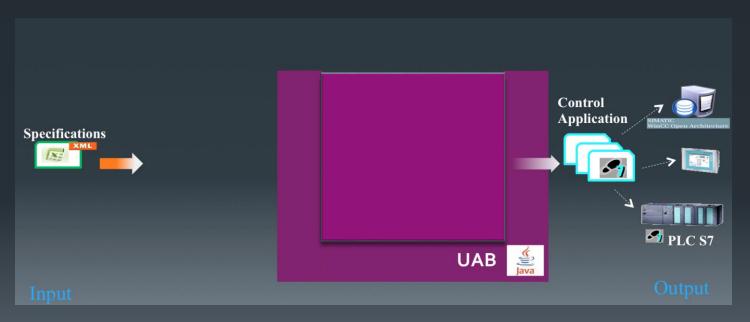
Industrial Controls & Safety Systems Beams Department ICALEPCS'17, Oct17 E. Blanco - CERN

Process Analysis: Decomposition

Specifications

UNICOS CPC Specs (xls/xml file)

DeviceDesumentation											
DeviceDocumentation			FEDeviceIOConfig FEChannel		FEDeviceParameters						
Name	Description	Electrical Diagram	Romarks	EE encoding type		Range Min	Range Max	Raw Min	Raw Max	DeadBand (%)	
QSDN 4 1TT4001	Vessel 1- Heater section1-Temp. control	Al1.0	Remarks	r c encounig type	%IW1.1.0	80	350	0	10000	0.025	
QSDN 4 AI1	SPARE	Al1.0		[]	%IW1.1.1	0	100	0	10000	0.025	
QSDN 4 1TT4002	Vessel 1- Heater section2-Temp. control	AI1.2		[]	%IW1.1.2	80	350	0	10000	0.025	
QSDN 4 1TT4003	Vessel 1- Heater section3-Temp. control	AI1.3		(%IW1.1.3	80	350	0	10000	0.025	
QSDN 4 1LE400	Vessel 1- LN2 Level	AI1.4			%IW1.1.4	0	1350	0	10000	0.025	
QSDN 4 1PT400	Vessel 1- LN2 Vessel Pressure	AI1.5		[]	%IW1.1.5	0	4.0	0	10000	0.025	
QSDN 4 1PT400	Vessel 1- LN2 Vessel Pressure	AI1.5			%IW1.1.5	0	4.0	0	10000	0.025	
CERN CH1211 Geneva 23 Switzerland	EDNS NO. REM. 0000000 1.0 REFERENCE XXXX	2.4	BESCRIPTION Process decor 3.2 Operation 3.2.4 Dep	mposition							
FUNCTIONAL ANALYSIS UNICOS-CPC (Continuous Process Control)						3.5 Unit Alarms 3.5.1 Unit hardware alarms					
	TEMPLATE FOR					Name	Con	dition	Action*		Message
FUNCTIONAL ANALYSIS				CV4	And State					. iessage	
					This	DNCT_FS1	L ESSCOR	Off	FS	equipme	nt emergency s
[sub title]					DNCT_FS2	24VPw0	Dn. Off	FS	Pre	sence 24VDC Po	
					1CV	DNCT_FS3	3 24VI00	n	FS	Pr	esence 24VDC
[sub title]					_ - <u>f</u> !	DNCT_FS4	+ 20Q6.C	off	FS	Circuit breaker	24VDC for emer
[sub title]						DNCT_FS5	5 26Q2. C	off	FS	Circuit l	breaker 24VDC I
					■ - FLL!	DAVET FOR				et an air	



17

Automatic code generation

In a minute...

For Each PCO the process engineers supply the logic associated to each PCO in a template document (WORD)

18

UNICOS

Process control logic Interlock Logic **Configuration** logic Logic Placeholders **Global** logic Interlock Logic Configuration logic **Global logic** Legen (1) = Full Stop or Temporary Stop or Sequencer / Transitions (2) Time Out (will be include in FS Logic) c Control Stop Order or Direct Stop Order

Dependent Object control logic **Dependent Object** control logic **Dependent Object** control logic

Process logic can be either:

- coded by the control engineer in an standard way.
- some applications may create automatically the logic based on templates based on Python scripting.

0+ Vessel In auto-po 1EH40 control logic 1EH4001Ok Vessel1 Step 1EH40 $\overline{0+}$ 1EH4002Ok Vessel1 Step 1PV40 Vessel 1 Step 1EH4003Ok $\overline{0+}$ Vessel1 Step Vessel 1 Step 1PV40

VESSEL 1 CONTROL OBJECT

Sequencer

1EH40

Bun orders

1PV408 Vessel 1 Step Vessel1 Step 1PV409

1PC400 Dependent Object

Vessel1 Step 1EH4003Ok Vessel 1 Step 1: Stop Vessel 1 Step Vessel 1 Step 10: Start (On position)

1PV408

1EH4002Ok

Set 0% Output

1PC400 controlling 1EH400:

Vessel1 St

Vessel 1 Step 1: Stop

1PC400 cont Ding 1EH400 ent Objecturput

Vessel 1 Step 1: Close Request: Vessel 1 Step 11 or Step 13: Open Request

1% (second

Vessel 1 Step 1: AuAuMoR=1 & Set 0% Output

control logic

1EH4001 Ok Dependent Object

Vessel 1 Step 10: Start (On position)

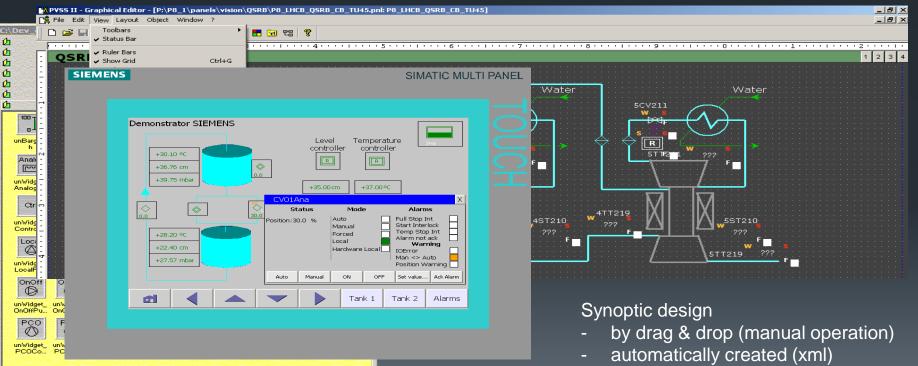
Vessel 1 Step 12 & 13: Set Regulation mode SP=2.6Ba

In auto-position mode ramp up & down 1% /second

1 PV/409

Vessel 1 Step 1: Close Request Vessel 1 Step 11 or Step 13: Open Request

Ø

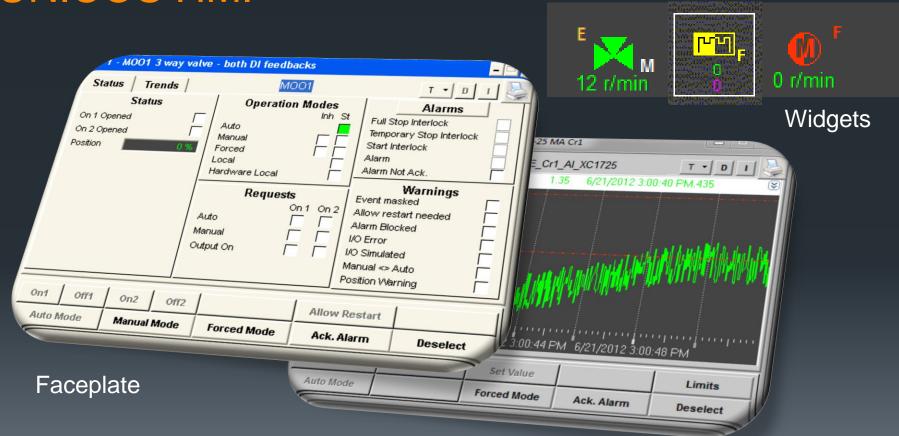

UN STATICS

HMI synoptics

ICALEPCS'17, Oct17 E. Blanco - CERN UNICOS

19

Manual intervention (or automatic if known a priori)



Industrial Controls & Safety Systems Beams Department

UNICOS HMI

ICALEPCS'17, Oct17 E. Blanco - CERN 20 UNICOS

UNICOS HMI

- HMI
- Alarms
- Events
- Navigation
- Trends
- System integrity
- BEEP
- Access control
- Contextual buttons
- Uniform look & feel

E. Blanco - CERN - 🗆 × • × ++ 4 (A) . W. P18_S12_DFBAC_HCM P18 - P2 19 4 8 2 Bam 2.58:59 PM 6/21/2012 2012/08/21 14:57:16:067 LOATH_20L2_TT821 Cold Mass - FIP_L2C_43_02 Position Statut 900585 793/ 795 Unack HM Luncos-M 1 2 3 4 🗉 🗙 🖅 🎝 🏄 🦽 · Wis DFBAC_LCM-VACUUM ISOLDE 5 (A) 🔊 👌 🖹 🕅 1:18:38 AM 6/21/201 0120101 19 13 17 308 WSL VAR20 VAR SIT Pressure in the buffer below Position Stat 635 Unack - 0 × 🛨 🛪 😽 🏟 🐔 🔔 📾 S usen MVAC_PSMVAC_PS_UAUX_225_01 pri HVAC PS TE AL ON O 10 00 1:12:23 PM 6/16/2017 - 🗆 × 💌 🗙 😚 🎎 😤 🛤 1 2 3 4 14:38 PM 6/16/2017 HC Elevators v1.0.5 1 10 Re m 706/16 12 10:09 UFT_PM54_ASC_FAULT_DEFAUT_ASCENSEUR_Position_Status FALSE 8/8 DETAILLED VIEW - CRAS-0071 1:14:39 PM 646/2017 • Neaur keau-Veau. 010 pide pni Vers2 0

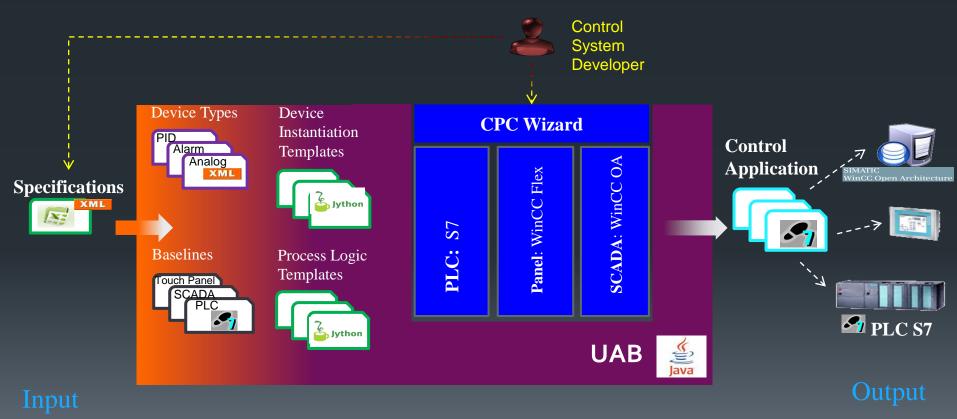
ICALEPCS'17, Oct17

UNICOS

21

22

Outline


- UNICOS foundation
- Device model
- Methodology
- Automatic control systems generation
- Conclusions

UNICOS

23

UAB: UNICOS Application Builder

Workflow based on wizards

🚾 UAB CPC	-Wizard v1.	3.2-beta-02										
		Wizard v1.3.2-beta-02										
Y I	CERN) CPC-Wizard: tast - tast ut 0 UAB CPC-Wizard v1.3.2-beta-02											
General I	1921	CPC-Wizard: test - test v1.0 Unity Logic Generator										
	General D	Resources: 1.3.2-beta-02										
PL		General Data 😮										
PL		Templates Folder	ces\UnityLogicGenerato									
	Process	User Templates Folder Output Folder	Open									
	Global File	Output File	\UnityLogicGenerator\pl	c_ Open								
Ethernet	Gene	Process Semantic Rules:	ST	▼								
		Import and Generate 🚷										
	Device T AnaDO	Master	Section	Туре	Master	Logic File						
IP A	Analog AnalogAla	DEMON_1_DemonPCO	DEMON_1_Demon DEMON_1_Demon	Configuration Logic	DEMON_1_Demon DEMON_1_Demon	SchLogic_IL_Stand 🔨						
IP A	AnalogDig	DEMON_1_PCO1	DEMON_1_Demon DEMON_1_Demon	Instantiation	DEMON_1_Demon DEMON_1_Demon	SchLogic_BL_Stan SchLogic_INST_St						
Ne	AnalogInp AnalogInp AnalogOu	Select All	DEMON_1_Demon DEMON_1_Demon	Transition Logic	DEMON_1_Demon DEMON_1_Demon	SchLogic_GL_Stan SchLogic_TL_Stan						
146	AnalogOu	Filter	DEMON_1_Demon DEMON_1_Demon	Common Depende	DEMON_1_Demon DEMON_1_Demon	SchLogic_SL_Stan SchLogic_CDOL_St						
	AnalogPar AnalogSta	Interlock Logic	DEMON_1_A1_DL DEMON_1_A5_DL	Analog Analog	DEMON_1_Demon DEMON_1_Demon	SchLogic_Analog SchLogic_Analog						
Mapping	Controller DigitalAlar	Basic Logic	DEMON_1_AD1_DL DEMON_1_Ctrl1_DL	AnalogDigital Controller	DEMON_1_Demon DEMON_1_Demon	SchLogic_AnalogDi SchLogic_Controlle						
	DigitalTop	Global Logic Transition Logic 🛛 😪	DEMON_1_PCO3_DL DEMON_1_004_DL	ProcessControlObject OnOff	t DEMON_1_Demon DEMON_1_Demon	SchLogic_ProcessC						
		Select All	Select All	Edit Specs.	eload Specs. Filt	ered objects: 131						
	Generatio	Generation Status 🔞										
)						
	Instance Ge	Instance Generator	Logic Generator									
	WinCC OA G	WinCC OA Gener W	inCC Flex Gene	Back	Generate	Exit						

Outline

- UNICOS foundation
- Device model
- Methodology
- Automatic control systems generation
- Conclusions

UNICOS benefits

Proven industrial technologies

- Standard CERN PLC suppliers: Siemens, Schneider (PLCs and Touch Panels)
- Standard CERN SCADA (WinCC OA)

Standardization

- Based on industrial standards: ISA-88 / IEC-61512: Batch control
- Uniform and maintainable code (IEC languages is not enough)
- Optimized maintenance and development backup with a central support
- Same look & feel (and functionality) optimizes operation in the control room

Rapid development

- Automatic generation of applications
- Early commissioning availability. No SCADA development

27 UNICOS

http://www.cern.ch/unicos

UNICOS framework composed of

- Generic set of reusable devices
- Analysis and development method
- Programming structure
- A rich functionally in a homogenized HMI

Facilitate the task of the automation engineer by allowing him/her in focusing only in the automation duty and not in the software production itself: Automatic generation of code.