

Borja Fernandez

Improving the quality of PLC programs

PBCS workshop - ICALEPCS 2017
06/10/2017

CE/RW
\

NS

Outline

d Model checking
1 Static analysis

d Conclusions

CE/RW
\

NS

Context

O BE-ICS group: Industrial Control and Safety.

O PLC control systems:
O Standard and Safety Instrumented Systems.

0 How can we guarantee that the PLC code is compliant with the

specifications? PLC program N
. Specifications

ovi START
I | —Cr)
EECh Y [N
EN ENO s
IEC 61131-3 i L v
ppppp ENABLE %Q100
' I—C)

N/

O Before: manual and automated testing
O Useful, but not efficient for every type of requirements.
Q Difficult to test safety requirements:
“if out1 is true, out2 should be false”

CE/RW
\

NS

Testing vs. model checking

NI

0.0 ——
— Q0.0
0.1 —
W2 — PLC program
W3 e —— Q0.1
Safety Requirement
If Q0.0 is TRUE, then Q0.1 is FALSE
It's a “quite” Model checking will explore
complicated task for all input combinations and
Testing. will verify the safety property

CE/RW
\

NS

Context
IEC 61508: Software design and dev. (table A.2)

Technique/Measure Ref SIL1 SIL2 SIL3 SiL4
1 Fault detection and diagnosis C31 -—- R HR HR
|EC 61 51 1 giveS 2 Error detecting and cormrecting codes C32 R R R HR
: : Ja Failure assertion programmin C.3.3 R R R HR
guidelines for the 3b Safety bag techn::;ugs - C34 R R R
“app”cation 3c Diverse programming C35 R R R HR
SOftwa re,, 3d Recovery block C36 R R R R
3e Backward recovery C37 R R R R
3f Forward recovery C38 R R R R
3g Re-try fault recovery mechanisms C39 R R R HR
3h Memorising executed cases C.3.10 -—- R R HR
4 Graceful degradation C.3.11 R R HR HR
5 Artificial intelligence - fault correction C312 - NR NR NR
6 Dynamic reconfiguration C313 -—- NR NR NR
Even for S||_1 |t iS 7a Structured methods including for example, C.21 HR HR HR HR
1SN MASCOT SANDT and Yourdon
recommended to 7b_Semi-formal methods TabeB7 | R R HR HR
i 7c Formal methods including for example, CCS, C24
use [Semi]-formal CSP, HOL, LOTOS, OBJ?temporal Egic, VDM R R HR
methods and Z
8 Computer-aided specification tools B.24 R R HR HR
a) Appropriate techniques/measures shall be selected according to the safety integrity level.
Alternate or equivalent technigues/measures are indicated by a letter following the number. Only one
of the alternate or equivalent techniques/measures has to be satisfied.
b) The measures in this table concerning fault tolerance (control of failures) should be considered
CE/R_W with the requirements for architecture and control of failures for the hardware of the programmable
_/ electronics in part 2 of this standard.

Idea — Problems — State of the art

Applying formal verification to PLC programs (new developments
and existing systems independently of the purpose)

UBut...
O Why formal verification is not widely used in industry yet?
O How can we fill the gap between the automation and formal verification
worlds?

O Other industries using formal methods:
0 NASA: Remote Agent spacecraft control system (Deep Space 1 mission).
O Aircraft industry: Airbus A340 flight control , etc.
O Train systems: Subway in Paris, Line 14.
0 Communication protocols: IPv6 protocol.
4 Etc.

O What about formal verification in PLC based control systems?
Q Industry: ESTEREL (SCADE), Siemens and ABB doing research.
O Academia: RWTH Aachen University, TU Dortmund, ENS Cachan, ...

CE/RW
\

NS

Why model checking is not widely used in

automation?

~

How to get

models?
_

Automated
generation

Which model
checker should

be used? m

W

b grinder

atationn) fasd constituents
epsions
ol actassos
ciaing
T waTgher

welgher

cooter

.....

hamar w2 potiot w21 [63] Sl
Real System

(hardware, software)

Model
checker

Multiple
(general meth.)

CE/RW
\

NS

\.

-

How to make
it efficient?
y

Reductions

Specifications

=

Formal
Requirement

not satisfied

Counter-

example

How to
formalize

requirements?

Patterns

How to proceed
with a

\

counterexample?

v

Analysis &
Demonstration

Model checking vs. Testing

aQ MC checks the specifications against a model instead of the
real system.

a Allows to check properties that are almost impossible to
test (e.g. liveness properties).

QO Checks all possible combinations.
Q Gives a counterexample when a discrepancy is found.

A Possible to automatize (can be used by non-formal method
experts).

Q State space explosion.

CE/RW
\

NS

Our approach: methodology overview

1 General method for applying formal verification:
O Generate formal models automatically out of PLC code.
a Includes several input PLC languages
(IEC 61131-3: SFC, ST, IL, Ladder, FBD).
O Easy integration of different formal verification tools.

"PLC world" Internal model External models Analysis

nuXmyv model

SFC code ‘

—
intermediate|| | Model checking
—> UPPAAL model ———>| + Analysis of
Ladder Bl model L
. \

Ly ~"| counterexample
IL code :

\\/bstractlons /
. : ! reductlons
Requirement ——

7 PLC formal verification at CERN: http://cern.ch/project-plc-formalmethods

http://cern.ch/project-plc-formalmethods

Model example

1 IF ia > 0 THEN
- xa := TRUE;
ELSE
xa := FALSE;
IF ib > 0 THEN
xb := TRUE;
ELSE
xb
END IF;
END IF;
c :=c + 1;

FALSE;

:3 init (loc) := initial;
. next (loc) := case
loc = end : initial;
loc initial : 11;
loc
loc
loc
loc
loc 13 : end;
TRUE: loc;

esac;

next (XA) := case

TRUE : XA;
esacy

11 & ((IA > 0sdl6 0))
11 & (! ((IA > 0sdl6 0)))
12 & ((IB > 0sdl6 0))
12 & (! ((IB > 0sdI6 0)))

loc = 11 & ((IA > 0sdl6_0))
loc = 11 & (! ((IA > 0sdlé 0)))

12;

13;

TRUE;

FALSE;

init
initialization
of inputs

CE?W
\

Our approach: methodology overview

Traditional PLC
program
development

How can we be sure
that a bug found by
this methodology is

real?

We can use the
counterexample in
the real system and

prove it

Process engineer Control engineer

B A

PLC programmer IEC 61512
& LE Eceee
Frameworks

IEC61131-3 PLC code

Compiler

Y

PLC control system -

B Methodology

Model
generation

1
]
1
1
1
1
1
1
1
1
1
1
1
]
]
1
]
1
. 1
"]
. 1
1

1

1

]

1

1

]

1

1

1

1

1

1

]

1

1

1

1

1

1

Model Checker

e e e e E e —E—————— | e

Project status: CASE tool prototype

= e
Settings Help

[Project Explorer 108 Verfication Case (Demof01) (@ Demo001 Report 52 =8 =
4 =% DemoProject Qéh file:/// C/temp/ plovenif_v2 0.1b21/PLCverif/workspace/DemoProject/generated/DemaVerfCase.html - B n %
[+ [= generated |

& DemoSourcescl L - - =

B DemoveriCosess Verification report =

5 UNICOS baseibd il

=

1D: Demo001 e

Name: If Ais false, C cannot be true. g | 5=

Description: |[If Ais false, C cannot be true. As this function block models an AND-gate, if any of the inputs (A or B) is false, the output should be false

too.

The requirement is based on the documentation of the function block and the following Jira case:
https:/ficeconirols.its. cern.ch/jira/browse/UCPC-1111

Source

file: |DemoSource. scl

Result:

Eﬂuirement: 3. A=false & C = true is impossible at the end of the PLC cycle.

Tool: nusmv
Total runtime (until getting the verification results): 328 ms
Total runtime (incl. visualization): 670 ms

Counterexample
. End of
Variable Cycle 1
Input & FALSE
Input |b TRUE
Oufput ¢ TRUE

PLC formal verification at CERN: http://cern.ch/project-plc-formalmethods

m

http://cern.ch/project-plc-formalmethods

Project status & Results

d The methodology has been applied to PLC programs
at CERN.:

O UNICOS library: Bugs/discrepancies have been found in previously
tested PLC programs

O Full UNICOS applications: Cryogenic control system (QSDN)

O Safety PLC programs: SM18, FAIR, AWAKE (THCPAO1 paper), ITER
HIOC protocol (THPHA161 paper), etc.

d Future development & research:

O Production-ready CASE tool
OQ More abstraction and reduction techniques
O Control system specifications

CE/RW
\

7 PLC formal verification at CERN: http://cern.ch/project-plc-formalmethods

http://cern.ch/project-plc-formalmethods

Static Analysis

J Whatis it?

O Technique that examines a program without executing it

O Similar to code review or code comprehension performed by automated
tools

O Good complement to testing and formal verification

J Which method?

O Rule-based AST (Abstract Syntax Tree) analysis, control-flow
analysis, data-flow analysis, call graph analysis, etc.

J What can we detect?

O Naming conventions violations, bad code smells (e.g. dead or duplicated
code), overcomplicated expressions, multitasking problems, etc.

CE/RW
\

NS

Static Analysis in PLC

d UNICOS code guidelines?

(x AUTO REQUEST / SELECT)
IF AuMoSt THEN

(Avoid the starting of PCO with a start

IF NOT (StartISt AND NOT RunOSt) THEN
Run0St := AuRunOrder;
MOnRSt := AuRunOrder;

END_IF;

AuDepOSt := AuAuDepR;

IF (0.0 <
IF 0ffSt THEN

OpMoSt := AuOpMoR;
ELSE

AuOpMoR)] THEN
OpMoSt := AuOpMoR;
END_IF;
END_IF;
END_IF;

(x MANUAL REQUEST / SELECT =)
ELSIF MMoSt OR FoMoSt OR SoftLDSt THEN

ia;ry END_IF;

Interlock =)

AuOpMoR) AND (AuOpMoR < 9.0) THEN

IF POpMoTab[REAL_TO_INT(OpMoSt-1) ,REAL_TO_INT(8-

Static Analysis for PLC programs

O Lack of Static PLC Code Analysis tools comparing with general
purpose programing languages

O Several researchers and companies are working to bring static
analysis to PLC programs but still far from being a common
practice in this industry

0 UNICOS specific code guidelines implies specific static analysis
rules for our programs

CE/RW
\

NS

Static Analysis in PLC

O Some relevant tools

Tool PLC language Violations

PLC Checker (ltris Siemens AST and control naming rules, commenting rules, writing rules,
Automation) Step7,PLCopen XML, flow analysis (?) structure rules, information utilities and options
CoDeSys, Scheinder-
Electric Unity and
Rockwell Automation

RsLogix5000 etc.

JKU (Johannes Kemro language AST analysis, code metrics, naming conventions, program
Kepler University & developed control flow and complexity and possible performance problems,
Hagenberg and the by KEBAAG data flow bad code smells, architectural issues, incompatible

ENGEL configuration settings, multitasking problems and
Austria GmbH) dynamic statement dependencies
ARCADE.PLC IEC 61131 ST Abstract loss of precision in expressions, assignments

(Aachen IEC 61131 IL interpretation required on specific cast, unused variables and

University) Siemens S7 AWL(STL) output variables that were assigned more than once

in the source code

Our solution: Extending PLCverif

d ICALEPCS 2017: THPHA160 paper
d Modular architecture of PLCverif

O Integration of AST rule-based analysis

CBMC input CBMC execution
(Annotated C code)
Verification result J

nuXmv model Model checking

SA rules Reductions

Requirement Temporal logic
pattern requirement

cgfw
\

NS

Project status & Results

 Static analysis integrated in PLCverif

O Very early stage of the project
O AST-based analysis
O Naming convention and bad code smells rules (some of them UNICOS
specific rules)

J Future work

O More AST-based rules
O Extend to other methods (e.g. control flow graph, call graph analysis,
etc.)

CE/RW
\

NS

i

www.cern.ch

	Improving the quality of PLC pro...
	Slide3
	Context
	Testing vs. model checking
	IEC 61508: Software design and d...
	Idea – Problems – State of the a...
	Why model checking is not widely...
	Model checking vs. Testing
	Our approach: methodology overvi...
	Model example
	Our approach: methodology overvi...
	Project status: CASE tool protot...
	Project status & Results
	Static Analysis
	Static Analysis in PLC
	Static Analysis for PLC programs
	Static Analysis in PLC
	Our solution: Extending PLCverif
	Project status & Results

