

Vienna fast simulation and track fit tool for flexible detector optimization studies

M. Regler, M. Valentan, R. Frühwirth and W. Mitaroff

Institute of High Energy Physics of the Austrian Academy of Sciences, Vienna

CLIC-ILC Detector R&D, Geneva, 25 July 2008

Abstract

The "LiC Detector Toy" allows investigation of the track parameter resolution via Monte Carlo, for the purpose of optimizing a detector set-up. It features:

- Simulation of the track sensitive part of a ring or linear collider detector with a solenoid magnetic field, and its material budget;
- Support of measurements by semiconductor pixel and strip detectors, and a TPC;
- Track reconstruction by a Kalman filter, including tests of goodness of the fits.

Written in MatLab[®] (a language and IDE by MathWorks).

Version 2.0 available for GNU Octave

Motivation

- Compare track parameter resolutions of various detector setups, for both barrel and forward/backward regions;
- Optimize size and position of the track sensitive devices, and of the detector material budgets;
- A simple tool easy to understand, handle and modify;
- Can easily be adapted to meet individual needs;
- Can be installed on a desktop or laptop PC;
- Quick results by "shorter than a coffee break";
- Live demonstration at a conference possible;
- An integrated graphics user interface (GUI) available.

Program Features (general)

- Measurements by single or double layers, or by a TPC;
- Efficiencies uncorrelated (strips), or strictly correlated (pixels); passive layers defined by zero efficiency;
- Thickness of scatterers given in radiation lengths;
- Homogeneous magnetic field (by a solenoid), rotational symmetry w.r.t. the z-axis of the detector set-up; however, an asymmetry w.r.t. the z coordinate possible;
- Start parameters for simulated tracks are user-defined:
 - Vertex position range,

ECFA Study

Physics and Detectors

- Transverse momentum range,
- Range of polar angle θ ,
- Number of tracks from the vertex;
- Goodness of the fit monitored by pull quantities and χ^2 .

Program Features (barrel region)

• Coaxial cylinder layers of arbitrary length and position;

ECFA Study

Physics and Detectors

- Any number of passive layers;
- Measurement of two coordinates: azimuth (RΦ), position along the cylinder (z);
- Optional stereo angle for strip detectors (z' instead of z);
- Resolution in TPC gaussian, and may depend on z.

Program Features (fwd/bwd region)

- Circular plane layers, perpendicular to z-axis;
- Arbitrary z position and inner/outer radius;
- Any number of passive plane layers;

ECFA Study

Physics and Detectors

• Measurements of two coordinates (u and v), directions depend on intersection point, defined by angles δ_1 , δ_2 .

CLIC-ILC Detector R&D, Geneva, 25 July 2008

W. Mitaroff, HEPHY Vienna

Simulation

- Single tracks originating from a vertex, assumed at (x, y, z);
- Solenoid magnetic field, rotational symmetry w.r.t. z-axis;
- Exact helix track model, with kinks for multiple scattering;
- Multiple scattering at discrete "thin" layers:
 - Measurement layers and scattering material treated separately,
 - Correct path length traversed, material budget averaged over layer,
 - Scattering angles gaussian distributed (in the track's local coordinate frame) according to the Highland formula;
- Gaussian (TPC) or uniformly distributed measurement errors;
- Systematic and/or stochastic inefficiencies included.

ECFA Study

Physics and Detectors

Reconstruction

• No Pattern Recognition !

- Track fit by an exact Kalman filter:
 - Inclusion of multiple scattering ("process noise"),
 - Fitting performed from outside inwards;
- Linear track model:
 - Expansion point is a "reference track" (method similar to that of the DELPHI experiment);
- Parameters:

ECFA Study

Physics and Detectors for a Linear Collider

- Fitted parameters defined at the inside of the innermost layer,
- DELPHI-like parameter vector and error matrix:
 - { Φ , z, θ , $\beta = \varphi \Phi$, $\kappa = \pm 1/R_H$ } with sign(κ) = sign(d φ /ds), and corresponding 5x5 covariance matrix;
- Optional CMS-like Cartesian parameters and errors: { x, y, z, p_x , p_y , p_z } with a 6x6 covariance matrix of rank 5.

Graphic User Interface (GUI)

Set parameters	Messages:
Interrupt	No messages
Run simulation	
	Warnings:
Outputs	No warnings
Pulls histograms	
Residuals histograms	
Curves	save results I oad results
RAVE file	
LIAS3 file	Exit LIC Detector Toy
	Set parameters Run simulation Outputs View log file Pulls histograms Residuals histograms Impacts histograms Curves RAVE file W22 file

CLIC-ILC Detector R&D, Geneva, 25 July 2008

ECFA Study

Physics and Detectors for a Linear Collider con for the Linear Collid

Simulation Results

ight: Looping over detector setup and/or start parameters

W. Mitaroff, HEPHY Vienna

30

Polar angle 0 [deg]

40

50

20

10

CLIC-ILC Detector R&D, Geneva, 25 July 2008

ECFA Study

Physics and Detectors for a Linear Collider

Detector Display (LDCPrime_02Sc, April 2008)

CLIC-ILC Detector R&D, Geneva, 25 July 2008

ECFA Study

Physics and Detectors

Short study on forward region (LDCPrime_02Sc, April 2008)

Momentum resolution and transverse impact parameter as function of p_t

CLIC-ILC Detector R&D, Geneva, 25 July 2008

ECFA Study

Physics and Detectors

Momentum resolution and transverse impact parameter as function of θ

CLIC-ILC Detector R&D, Geneva, 25 July 2008

ECFA Study

Physics and Detectors

on for the Linear

W. Mitaroff, HEPHY Vienna

Subsequent vertex fit by RAVE

• Fitted tracks as input to the VERTIGO/RAVE vertex reconstruction toolkit;

ECFA Study

Physics and Detectors

- Interface is the Harvester's standard CSV text format;
- Successfully tested with 10and 1000-prong events.

CLIC-ILC Detector R&D, Geneva, 25 July 2008

LDT on the Web

http://wwwhephy.oeaw.ac.at/p3w/ilc/lictoy/ LDTsource_20.zip UserGuide 20.pdf

Conference Proceedings

http://wwwhephy.oeaw.ac.at/p3w/ilc/reports/ LiC_Det_Toy/Proceedings/...

CLIC-ILC Detector R&D, Geneva, 25 July 2008