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Heavy Ion Physics

-rom RHIC to LHC

Performance in ATLAS and CMS
m Outlook
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Why Heavy lons at the LHC?

+

m QCD is the fundamental theory of strong
interactions.

m QCD is well studied/tested in the few particles
and large Q% i.e. in perturbative limit

m Heavy Ions provide a new opportunity to study
QCD in small Q¢ and many-particle regime
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QCD Coupling Constant

@ & |[NMNLO

213 MeV
178 MeV

non perturbative at asymptotic freedom at
long range/low energy short range / high energy
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Matter under Extreme conditions

+

\ Normal Nuclear Matter

Quark-Gluon Plasma (QGP) is a state of QCD and is considered to be the
primordial matter of the Universe

» Quarks and gluons are deconfined
» Chiral symmetry is restored (quarks are massless)

HI collisions provide unique opportunity to study matter limit of QCD
m Another calculable limit of QCD
— Asymptotic freedom via high temperature

m Only matter we can create in the laboratory whose properties are
entirely determined by / interaction




Lattice QCD calculations

4\: The nature of this bath of
quarks and gluons cannot be
calculated directly with
Quantum Chromodynamics.

m Teraflop-scale computers
simulate equilibrium QCD
(assume thermal system)

m Predict phase transition:

SPS 3 flavour
2 flavour

T. ~170 MeV or 10%F ‘_ [
s e
g, ~0.7GeV [ fm 2L

Direct consequence of asymptotic freedom.




LHC Heavy lon Program

+

m Machine

» Energy
m E(beam)=7* Z/A—+/s = 5.5.TeV/A or 1.14 PeV for Pb-Pb

» Heavy Ion Running
m Typically 4 weeks/ year
m Luminosity 102 cm2 st (Pb)
= 10 kHz rates

m Experiments
» ALICE: experiment designed for HI
» ATLAS and CMS: have a major and rich HI program

> this talk
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What Have We Learned from RHIC

»Au+Au collisions @ 200 GeV/N-N pair produce “matter”
with energy density > 10 GeV/fm?3

»This matter induces strong energy loss in hard-scattered
quarks and gluons.

» This matter thermalizes rapidly and generates large
pressures —

— “Ideal Fluid”

> Initial conditions of a heavy ion collision are affected by
strong coherent gluon fields in the incident nuclei
(saturation).

>
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Heavy lon Physics at LHC

+

m LHC: factor 30 jump in center of mass
energy with respect to RHIC

Central collisions SPS RHIC

s1/2(GeV) 17 200

dN, /dy 700

x 4 -10
€ (GeV/fm?3) : 3.5-10 =

V(fm3) 7x103

Toop (FM/C) <1| 1.5-4.0 *3
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The ATLAS and CMS detectors

Different technologies but close acceptances — cross-checks possible.

Unprecedented acceptance for A+A physics both in p; and rapidity, with full

azimuth

Muon Spectrometer
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ATLAS:

Inner detector (|n|<2.5)
ECAL (Inl<3.2)

HCAL (In|<3.2)

HF (3.2<|n|<5)

Muon (|n|<2.7)

Lucid (5.5<|n|<6)

ZDC (In[>8)

CMS:
Inner detector (In|<2.5)

ECAL (In|<3)
HCAL (n|<3)

HF (3<|n|<5)
Muon (|n|<2.4)
Castor (5<|n|<6.7)
ZDC (In|>8)
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Heavy lon Physics Program at LHC

|

m LHC will accelerate and collide heavy ions at energies far
exceeding the range of existing accelerators:

» A hotter and longer lived partonic phase

» Extended kinematic reach for pp, pA, AA

» New experimentally accessible hard probes
s Some examples of what we hope to do:

» First 15 min of running at low luminosity ~ 10°
events:

global event properties and hadronic observables
m multiplicity
m elliptic flow

> first few days of running ~ 107 events:
high-pt, heavy flavor
m jet quenching, photon, heavy-flavour energy loss
m quarkonium production




+

GLOBAL EVENT PROPERTIES:

»Characterize gross properties of initial state
» Test saturation predictions

»Probe early collective motion
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Charged Particle Density vs c.m. energy

+

m First estimate of energy density
m Saturation, CGC ?
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Multiplicity measurements

Tone event

m hit count in pixels

m Silicon Hits using dE/dx cut
: b
ATLAS () 5000; Pixels hits count
4000} ! H CMS
400 | 8 llliﬁpflll lﬂlIH I{TI{ITI
2000 — . 3000 :_ {HI‘H I ;H}f# .
15005— 2005_ i ;I HIJING H
1000? 2000:— default SEttingS
500 [ 100 1 - * Simulated Primary Tracks
e e B B SRR R I ] [P ON e corcecrr SRR
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Collective flow in heavy i1on collisions

+

In non central collisions there is large initial spatial
anisotropy.

The degree to which this translates into momentum space
IS @ measure of the pressure gradient

. 3177 % *
. 1031 % M

.
b "E*".' e
faeeet

(direction of the — )
impact parameter) (I) (I)Iab \Vplane

“elliptic flow”




Flow at RHIC

+

e Hydrodynamics with small viscosity
describes heavy ion reactions

|

20 25 30 35
(1/S) dN_, /dy
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Elliptic Flow in ATLAS and CMS

+

m ATLAS

Flow included in HIJING
using parametrization
from RHIC

m 3 separate methods are

c)

b=10.7fm

v {EPXp,)

HYDJET

Flow measured using
reaction plane and tracker

0.08-

0_05;— $i$$

0.04F
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Hard Probes

+

QCD probe out
QCD probe in

Modification??

Excited medium
(possible quark-gluon plasma®)

m Hard probe rates can be calculated with pQCD

m Results with no medium (pp) define the benchmark
for the probe;

m Results in hot medium and their difference with
defined expectation provides a characterization
of the medium.
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Jet Tomography

+

e Partons are expected to lose energy
via induced gluon radiation in
traversing a dense colored medium.
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Discovery of Jet Quenching at RHIC

+

m Measure using (Leading) high-p; hadrons and
photons

- PHENIX Au+Au (central collisions): N ' T ' : | : ]
S W Directy 0ok STAR\s,,, = 200 GeV E
% 10 L ™ - T ——  proton-proton ]
@ = R _
LL GLV parton energy loss (dN'/dy = 1100) < - *— Gold-Gold Central 1
C ] o 0150 —
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Jet Rates at LHC

Annual hard process yields

I IIIIIII]

Pb+Pb minbias, 5.5 TeV

e High p;, large
rates

binary scaling from p+p
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“Full” Jet Measurements at LHC

+After subtraction of the “underlying event” background

CMS
Iterative cone (R>=0.5) wit
ATLASCone, R=0.4, background subtraction
with background
Subtraction

—
T

o
(=]
T T

efficiency

o
[-))
1 1

[=]
o

(=]
N

e
N
T L

o dN/dn = 2700
+  dN/dn = 1700
= dN/dh = 460
~{50 200 250 300 A-g}t;g-,
- a- crency
EEIEUth (Gev) {1 |

BARREL
0.3

o
(=]

Mljet me

Efficiency, Purity (‘@
o
o

B
Q

N
(=]

(=]

o 50 100 150 200 250 300 350
E; MC jet in cone 0.5, GeV

dN/dn = 2700 T
dN/dn=1700 - E;rec vs E9¢en
dN/dn = 460 g

b ~
A 9 4
n

2 o o o ® g
A A n o
| [} A i
u ] . - N

o
[ ]
!
5

dN_,/dn = 5000

truth d s L L L L S L L]
E/"™ (GeV) E 0 T00 150 200 250 300 350
EVC (GeV)

PR TS SN S I SN N T N S T S
150 200 250




Fragmentation Functions

+

s Well measured fragmentation function both in j;
and z

m Will provide direct access to radiative energy loss
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Photon measurement at LHC

+

m Excellent photon reconstruction will allow direct
photon and y-jet measurements:
» ATLAS uses direct identification in first EM sampling
layer through shower shape

» CMS uses Photon reconstruction with Island Algorithm
and Photon ID using Multi-Variate Analysis
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Lattice QCD calculation

Deconfinement

Ah Lattice QCD makes a
clear prediction for

the onset of
deconfinement.

m Different Quarkonia states test the degree of color
screening and measure the temperature.




J/y suppression at RHIC
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J/y Measurement at the LHC

*10 - : CMS

l'% Iy E‘:’E 1400 ' '
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tagging method
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(per month,10 s, 0.5 nb )
J/v ~ 180 kevents
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Upsilon Measurement at LHC

+
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Conclusions

+

m The LHC with Heavy Ions is a fantastic discovery
machine with a very rich Physics program:

» The first 15 minutes; L ,=1ub™
m Event multiplicity, elliptic flow
» The first month; L =0.1-1nb

= Rare high p, processes: jets, quarkonia

m ATLAS and CMS have unprecendented capabilities to
make measurements over a large kinematic range for
important signatures of the Quark Gluon Plasma

m The experiments will be commissioned and ready
(thanks to the proton run)

Important results already from the very start of running
with nuclear beams




