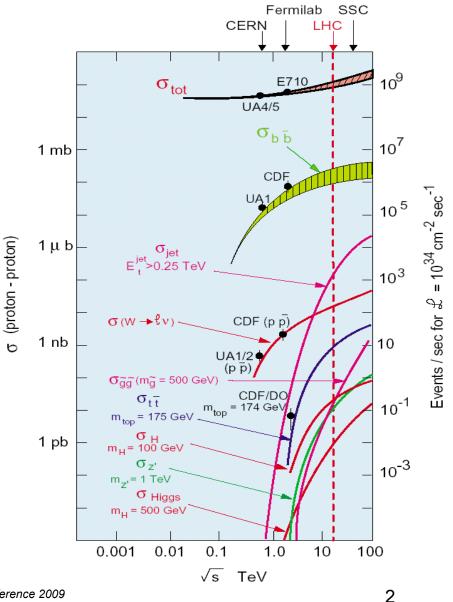


Prospects for Flavor Physics at ATLAS and CMS


Aspen Winter Conference February 8-14, 2009

Marc Baarmand Florida Institute of Technology

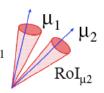
- p-p collisions at $\int s = 10-14$ TeV: σ (bb) ≈ 100-400 μb 10⁵ bb pairs /s @ L=10³³ cm⁻²s⁻¹ Large statistics allow precision measurements of B hadrons
- LHC ratio σ (bb) $/\sigma_{tot}$ is higher compared to earlier accelerators \rightarrow higher muon rate from B events
- ATLAS / CMS are general purpose detectors, however B physics requirements are taken into account in detector and trigger: good muon coverage and robust muon and di-muon triggers

Early data period:

- ∫L < 100 pb⁻¹
- Measurements of $J/\Psi, \Upsilon$ and open b quark production cross section: QCD tests at new energy frontier
- Early extraction of exclusive decays, like $B^+ \rightarrow J/\Psi K^+$, $B_d^0 \rightarrow J/\Psi K^{0*}$, $B_s \rightarrow J/\Psi \Phi$
- J/Ψ , Υ and exclusive B channels provide test of detector calibration and monitoring (mass, lifetime, etc)
- ∫L = 200 pb⁻¹ 1 fb⁻¹
- Improve precision of lifetime measurements
- Set new limit for $B_s \rightarrow \mu \mu$
- Improve measurements of ${\rm B_c}$ and $\Lambda_{\rm b}$

Main data period:

- ∫L > 10 fb⁻¹
- Rare and semi-rare decays: $B_s \rightarrow \mu \mu$, $b \rightarrow s(d) \mu \mu$
- CP violating B_s mixing phase: $B_s \rightarrow J/\Psi \Phi$, $B_s \rightarrow D_s \pi(a1)$
- Λ_b polarization: $\Lambda_b \rightarrow \Lambda J/\Psi$
- Full study of ${\rm B_c}$ and other heavy flavor hadrons
- Lepton flavor violating search: $\tau \rightarrow \mu \mu + \mu -$

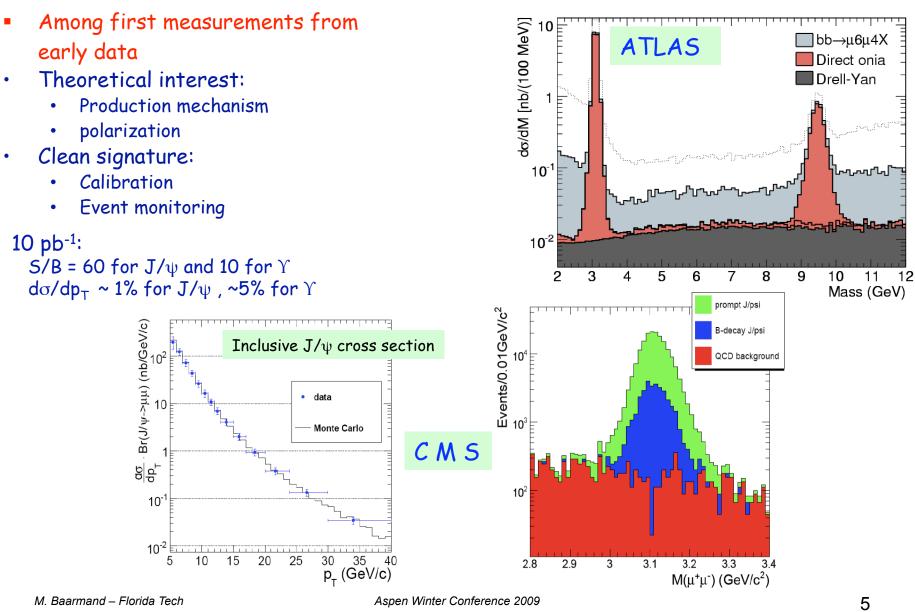


B Physics Triggers

ATLAS

- Three levels
- Level 1 hardware trigger (L1) ~2.5 μs
 - Identifies Regions of Interest (RoI)
 - 40 MHz \rightarrow 100 kHz
- Level 2 software trigger (L2) ~10 ms
 - Muon and inner detectors in L1 RoI
 - 100 kHz \rightarrow 1 kHz
- Event Filter (EF) ~1 s
 - Refine L2 using offline-like analysis; full event, alignment and calibration
 - 1 kHz \rightarrow 100 Hz
- B physics triggers
- + L1: μ μ with p_{T} > 4 GeV or μ combined with jet or EM RoI
- L2: topological $\mu~\mu$ trigger; L1 μ plus 2nd μ ; hadron triggers
- High luminosity: topological $\mu \mu$ trigger with increased RoI_{µ1} p_T threshold (6 GeV)

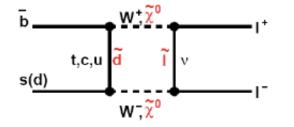
CMS

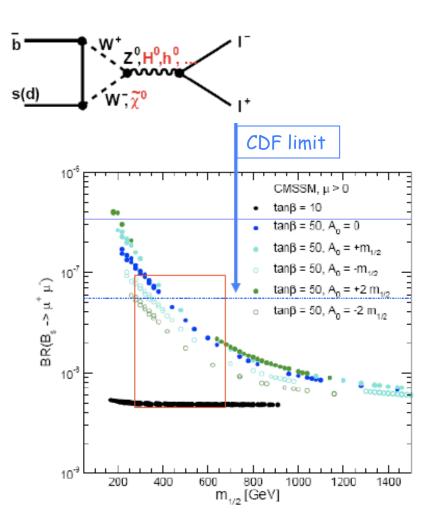

- Two levels
- Level 1 hardware trigger (L1) ~3.2 μs
 - Muon detectors and calorimeter
 - 40 MHz \rightarrow 100 kHz
- High level software trigger (HLT) ~1 s
 - Fast local reconstruction similar to offline analysis all subdetectors
 - 100 kHz \rightarrow 150 Hz
- B physics triggers
- L1: $\mu \mu$ with p_T > 3 GeV or μ with p_T > 7 GeV, increasing to 7 and 14 GeV at higher luminosity
- HLT: Exclusive + inclusive B triggers (pixel vertices, track pairs with given mass, partial reconstruction) ~5 Hz
- Displaced μ μ vertex from beam line allows keeping μ μ with p_T > 3 GeV in the HLT

M. Baarmand – Florida Tech

Quarkonia Production

Quarkonia Polarization

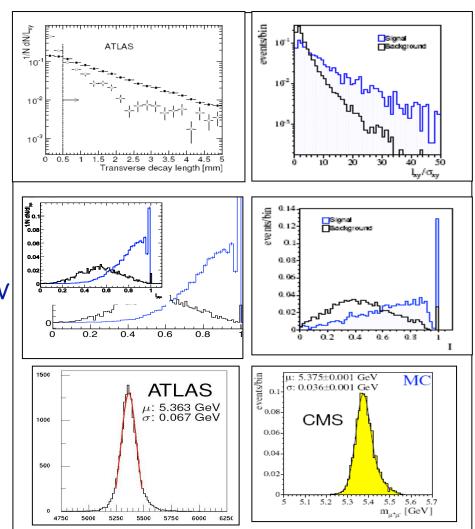




• $B_s \rightarrow \ell^+ \ell^-$ is forbidden at tree level but can proceed through higher order FCNC process

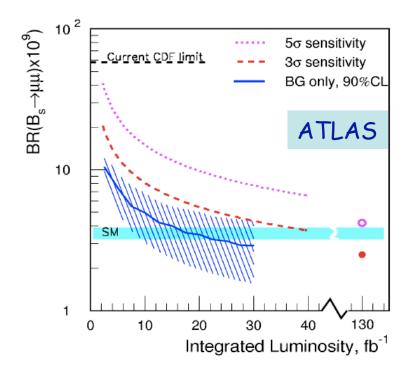
- BR(B_s \rightarrow µ+ µ-) = (3.42±0.46) × 10⁻⁹ in SM
- Current 95% CL limits from Tevatron (2 fb⁻¹) CDF : $58 \times 10^{-9} \sim 17 \times BR_{SM}$ D0 : $93 \times 10^{-9} \sim 27 \times BR_{SM}$
- SUSY can strongly enhance BR, e.g. BR(B_s → μ⁺ μ⁻) ≈ up to 100×10⁻⁹ within the constrained MSSM for high tanβ values (J. Ellis et al., hep-ph/0411216)

250 < $m_{1/2}$ < 650 GeV ⇒ BR(B_s → $\mu \mu$) ≈ 5×10⁻⁹ - 10⁻⁷



ATLAS & CMS

- $\mu \mu$ trigger at low and nominal LHC luminosity 10^{34} cm⁻²s⁻¹
- Background rejection:
- Significance of decay length ATLAS L_{xy}/σ_{xy} > 11, CMS L_{xy}/σ_{xy} >18
- Isolation $I_{\mu\mu} = p_T^{\mu\mu} / (p_T^{\mu\mu} + \Sigma p_{Ti}(\Delta R))$ CMS $I_{\mu\mu} > 0.85$, 0.3 < $\Delta R < 1.2$, $p_T > 0.9$ GeV ATLAS $I_{\mu\mu} > 0.9$, $\Delta R < 1.0$, $p_T > 1$ GeV
- Angle between p($\mu\,\mu$) and direction to PV ATLAS < 1°, CMS < 5.7°
- Mass window around m(B_s) ATLAS (-70, 140) MeV CMS ± 100 MeV

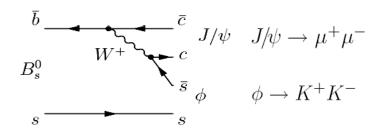


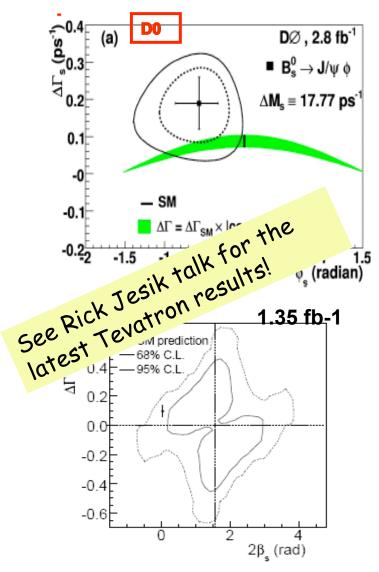
Statistics after cuts with 10 fb ⁻¹	BR	ATLAS	CMS
Signal $B_s \rightarrow \mu\mu$	3.4 · 10 ⁻⁹	5.7 ± 2.0	6.1 ± 2.1
$bb ightarrow \mu \mu X$	2 · 10 ⁻²	14 + 13 -10	14 +22 -14
Evts with fake muons			
$B_s \rightarrow K^+ K^-$	2 · 10 -5	0.015	<0.3
$B_s \! \to K^- \mu^+ \nu_\mu$	~10-4	negligible	negligible
Rare backgrounds			
$B_c \rightarrow J/\psi \; (\mu^+ \mu^-) \ell^+ \nu_\ell$	< 10 ⁻⁴	negligible	negligible
$B^+\!\to\mu^+\mu^-\ell^+\nu_\ell$	< 5 ·10 ⁻⁶	"	"
$B^0_{d} \rightarrow \pi^0 \mu^+ \mu^-$	$\sim 2 \cdot 10^{-8}$	"	"
$B^0_{\ s} \rightarrow \mu^+ \mu^- \gamma$	$\sim 2 \cdot 10^{-8}$	"	"

signal cross section is translated to BR by the reference process $B^{*} \to J/\Psi~K^{*}$

 $B_s \rightarrow \mu^+ \mu^-$ sensitivity:

- 2 fb⁻¹ BR ≤ 2 × 10⁻⁸
- 30 fb⁻¹ \approx SM prediction region
- 3σ evidence after 3 years @ 10^{33}
- \cdot 5 σ observation after 1 year @ 10³⁴





Weak phase of B_s mixing is precisely predicted within SM

 $\phi_s^{SM} = -\arg(V_{ts}^2) = -2\lambda 2\eta = -0.0368 \pm 0.0018$

- ϕ_s sensitive to New Physics, e.g. Little Higgs model with T-parity predicts larger ϕ_s
- CDF and D0 bounds on $\Delta\Gamma_s \phi_s$ ٠ Conclusion: assuming SM values $\Delta\Gamma_s = 0.096$ ps⁻¹ and $\phi_s = -0.04$, probability of deviation as large as the observed data is 15% (CDF) and 6.6% (DO)
- Experimentally most feasible channel is: $B_s \rightarrow J/\Psi (\mu\mu) \Phi (K K)$

$\mathsf{B}_{\mathsf{s}} \to \mathsf{J}/\Psi(\mu~\mu)~\varPhi(\mathsf{K}~\mathsf{K})$

Experimental advantage:

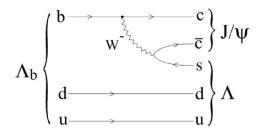
- Good trigger and BG suppression
- 3 angles, proper time, flavour tag
- Indep. determination of uncertainties

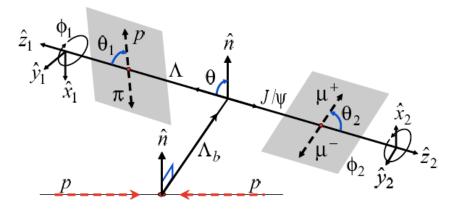
Large statistics allow multivariable analysis:

- Likelihood fit for 5 parameters (ϕ_{s} , Γ_s , $\Delta \Gamma_s$, A_{\perp} , $A_{||}$) while δ_1 , δ_2 constrained from $B_d \rightarrow J/\psi$ K* and Δm_s from $B_s \rightarrow D_s \pi$
- Uncertainty $\delta \phi_s \approx 0.07$ for each experiment -- new physics?!

	ATLAS	CMS		
Luminosity	30 fb-1			
Statistics	240000	260000		
Background	30%	33%		
	Dominated by $B_d \rightarrow J/\psi K^* B_d \rightarrow J/\psi K^*\pi^-$			
Time resol	83 fs	77 fs		
Mass resol	16.6 MeV	14 MeV		
Flav tagging	μ, e, Qjet	μ, e, Qjet		
φ _s	Similar	0.068		
ΔΓs	results	12%		
Гs	for	0.9%		
A _{ll}	for –	0.8%		
A _⊥	ATLAS	2.7%		
∆m _s (ps-1)	17.77 +- 0.12			
δ1δ2	Fixed from $B_d \rightarrow J/\psi K^*$			

Λ_b Polarization




Motivation: Parity violating $\alpha_{\Lambda b}$ parameter provides test of heavy quark factorization models and pQCD

Hyperons display large polarization even at large p_T but most models predict zero polarization – new physics!

 Λ_b polarization ${\it I\!\!P}$ and $\alpha_{\Lambda b}$ from

 $Λ_b → J/Ψ(µµ) Λ(p π)$

Five angles θ , θ_1 , θ_2 , ϕ_1 , ϕ_2 Full decay angular distribution:

$$w(\vec{\theta}, \vec{A}, P) = \frac{1}{(4\pi)^3} \sum_{i=0}^{i=19} f_{1i}(\vec{A}) f_{2i}(P, \alpha_{\Lambda}) F_i(\vec{\theta})$$

Helicity amplitudes a+, a-, b+, b-

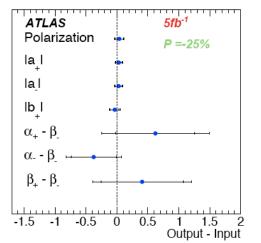
$$\alpha_{\Lambda_b} = \frac{|a_+|^2 - |a_-|^2 + |b_+|^2 - |b_-|^2}{|a_+|^2 + |a_-|^2 + |b_+|^2 + |b_-|^2}.$$

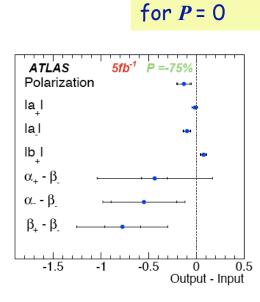
7 unknown parameters: $\alpha_b, P_b, |a_+|^2 + |a_-|^2, |a_+|^2 - |a_-|^2, \alpha_+ - \beta_-, \alpha_- - \beta_-, \beta_+ - \beta_-$

M. Baarmand – Florida Tech

Aspen Winter Conference 2009

Λ_b Polarization Results



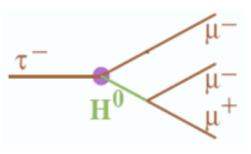

ATLAS

level-1 trigger:	one muon		two muons	
with p_T threshold	4 GeV	6 GeV	4GeV	6GeV
level-2 trigger:	TrigDiMuon		Topological trigger	
J/ψ reconstruction efficiency				
including level-1 and	42%	39%	27.5%	10%
level-2 triggers				
Λ reconstruction efficiency	15%			
Λ_b overall efficiency	6.1%	5.9%	5.4%	3.5%

Fit results for 5 fb⁻¹:

Aspen Winter Conference 2009

SM with massive neutrinos allows lepton flavor violation but small neutrino masses keep rate too low for observation < 10⁻³⁰


Many SM extensions allow greater LFV and a much larger BR($\tau \rightarrow 3 \mu$); generally BR ~ 10⁻⁽⁷⁻¹⁰⁾ Current limits: BR < 3.2 10⁻⁸ @ 90% C.L. from Belle BR < 5.3 10⁻⁸ @ 90% C.L. from BaBar

Total τ cross section ~ 120µb \rightarrow 10¹¹ τ /fb⁻¹

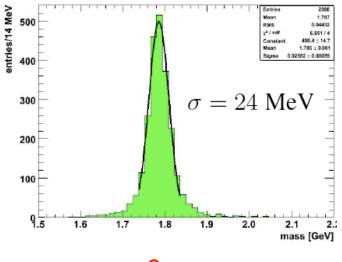
Sources of τ leptons:	Decay	N _τ / 10 fb ⁻¹
	$W \to \tau \; v_\tau$	1.7 x10 ⁸
	$Z \to \tau \tau$	3.2 x10 ⁷
	$B^0 \to \tau \; X$	4.0 x10 ¹¹
	$B^{\pm} \to \tau \; X$	3.8 x10 ¹¹
	$B_s \rightarrow$ т Х	7.9 x10 ¹⁰
	$D_s \rightarrow \tau X$	1.5 x10 ¹²

Most τ leptons are from b and c quarks

Clean experimental signature suitable triggers

CMS

Present analysis: $\tau \rightarrow 3 \mu$ from W decays


HLT: 2 μ with p_T > 7 GeV or 1 μ with p_T > 19 GeV

```
3 muons with m(3\mu)-m(\tau) < 25 \text{ MeV}
```

Largest background from $D_s \rightarrow \mu \nu \phi(\mu\mu)$ Veto the ϕ mass region for any $\mu\mu$ pair

```
Calculated sensitivity:
```

```
BR < 7.0 (3.8) × 10<sup>-8</sup> @ 95% C.L. with 10 (30) fb<sup>-1</sup>
```


 $\tau \rightarrow 3~\mu$ mass

ATLAS and CMS are well suited to do heavy flavor physics thanks to

Outstanding tracking systems allow for precise reconstruction of tracks and measurements of vertices
Excellent muon systems allow for triggering and reconstruction of dimuon final states

Wide array of heavy flavor physics is possible including new physics searches, rare decay searches, and precise mass and lifetime measurements, a few examples

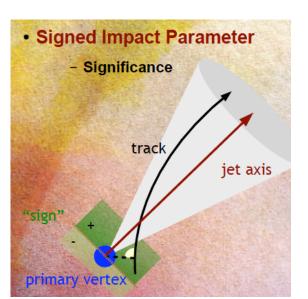
- Heavy quark and onium production measurements provide excellent tests of QCD at the new energy with early data (<10³³) - For $B_s \rightarrow \mu\mu$: 3σ evidence in 3 years @10³³, reach 5σ observation after 1 year at nominal LHC luminosity (10³⁴) - CPV in $B_s \rightarrow J/\psi(\mu\mu) \phi(KK)$ in 3 years @10³³ $\rightarrow \delta(\phi_s) \approx 0.07$ - could prove new physics if large ϕ_s - With 30 fb⁻¹ achieve sensitivity to measure Λ_b polarization P and

decay asymmetry $\alpha_{\Lambda b}$ with a few percent uncertainty

See ATLAS and CMS B physics web pages for more ...

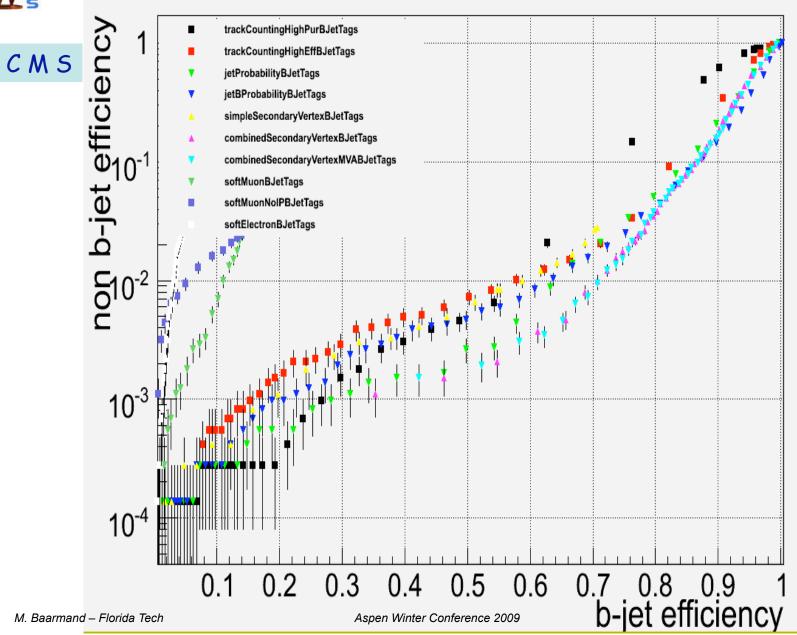


Backup Slides



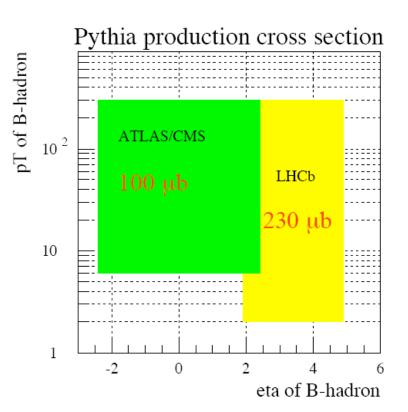
b tagging algorithms

Secondary Vertex Signed, 3d, flight distance significance "sign" b decay primary vertex


• All algorithms have ...

- a "simple" version which require no calibrations
 - The discriminator is the presence of a reconstructed object
 plus a single observable
 - Suitable for startup (allowing for misalignment)
- a "complex" version which requires calibrations or training
 - Combine many observables with an MVA tool (Likelihood, NN)
 - Require calibrations (on real data)
 - Not suitable for startup
- a "negative tagger" version (simple and/or complex)
 - Expect light jets to have symmetric distribution
 - Impact parameter, flight distance
 - Can be used to model non-b jets background for calibration on data
 - · See tomorrow's talk by Jeremy
- been studied in the STARTUP, misaligned scenario

FlavEffVsBEff_DUS_discr_trackCountingHighPurBJetTags_GLOBAL


19

b acceptance

- · ATLAS/CMS
 - |η| < 2.5/2.4
 - Tracker/muon detector acceptance
 - high-P_t muon trigger
 - b-tagged jet trigger
 - Muon+b-Jet trigger
- LHCb
 - Forward spectrometer
 - 1.9 < η < 4.9
 - much softer p_t triggers

