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Quirk/Hidden Valley/
Unparticle Model

X

CFT, no confinement        unparticles

QCD-like confinement        hidden valley

stringy confinement        quirks n=0

n=few

n=many

X is a heavy fermion with both 
SM and New gauge couplings

n light
fermions
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Unparticles
Georgi: 

  a different way to calculate in CFT’s

  phase space looks like a fractional number                       
of particles

Georgi hep-ph/0703260, 0704.2457
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discuss, this can have a profound impact on their mo-
mentum dependence.

The spectral density ρ(p2, µ) defined in (7) obeys the
renormalization-group evolution equation [50]

dρ(p2, µ)

d lnµ
= −

[
2Γcusp(µ) ln

p2

µ2
+ 2γJ(µ)

]
ρ(p2, µ)

− 2Γcusp(µ)

∫ p2

0

dp′2
ρ(p′2, µ) − ρ(p2, µ)

p2 − p′2
. (8)

The quantities Γcusp and γJ are anomalous dimensions,
which depend on the renormalization scale only through
the running coupling αs(µ). Their perturbative expan-
sions are known to three-loop order. In particular, Γcusp

is the cusp anomalous dimension of Wilson loops with
light-like segments [56], which plays a central role in the
physics of soft-gluon interactions (see e.g. [57]). We stress
that the form of the evolution kernel in (8) is exact; its
simplicity is a consequence of dimensonal analysis com-
bined with some magic properties of Wilson lines.

The exact solution to the evolution equation was ob-
tained in [54]. It can be written in the form

ρ(p2, µ0) = N(M, µ0)
(
p2

)η−1

× j̃
(

ln
p2

M2
+ ∂η, M

) e−γEη

Γ(η)
, (9)

where ∂η denotes a derivative with respect to the quantity
η, which is then identified with

η =

∫ M2

µ2
0

dν2

ν2
Γcusp(ν) . (10)

The normalization factor N has scaling dimension −2η
and is given by

lnN(M, µ0) =

∫ M2

µ2
0

dν2

ν2

[
Γcusp(ν) ln

1

ν2
+ γJ(ν)

]
. (11)

This quantity is momentum-independent and will thus
be irrelevant to our discussion. The function j̃(x, M) has
a perturbative expansion free of large logarithms. It is
obtained from the Laplace transform

j̃(x, M) =

∫ ∞

0

dp2 e−p2/s ρ(p2, M) , (12)

where s = ex+γEM2. At one-loop order [58]

j̃(x, M) = 1 +
CF αs(M)

4π

(
2x2 − 3x + 7 −

2π2

3

)
. (13)

The two-loop expression for this function can be found
in [50].

When the tree-level approximation j̃ = 1 is used in
(9), the result exactly coincides with the unparticle spec-
tral density (2). The terms of order αs(M) in j̃ lead to
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FIG. 1. Comparison of the unparticle spectral density (2)
(dashed) and the spectral density (9) of a massless quark jet
at next-to-leading order in QCD (solid). We use parameters
M = 10 GeV and η = 0.5. The right plot shows the same
results on logarithmic scales.

logarithmic modifications of the simple power form. In
the “unparticle language” they would indicate a small
breaking of conformal invariance, which is unavoidable if
the unparticle sector is coupled to the Standard Model.
Therefore, our result (9) shares all features of a realistic
model for the spectral function of the unparticles of a
conformal sector coupled to the Standard Model. In Fig-
ure 1 we compare the results (2) and (9) for a particular
set of input parameters.

In our “interacting particle model” for unparticle
states the exponent η = dU − 1 is expressed as an in-
tegral over the cusp anomalous dimension, see (10). In a
theory such as QCD the numerical value of η can be O(1)
provided the scales µ0 and M are widely separated. This
is because the perturbative smallness of the cusp anoma-
lous dimension is overcome by the logarithmic integra-
tion over scales. In leading logarithmic approximation
one finds

η ≈
Γ0

β0
ln

αs(µ0)

αs(M)
(14)

with Γ0 = 4CF = 16/3 and β0 = 11
3

CA− 2
3
nf = 23/3 (for

nf = 5 light flavors). Considering the case M = 10GeV
as an example, we obtain η = 0.5 for µ ≈ 1.2GeV. Other
examples of jet functions have a similar functional form
but different values of η. For the example of a gluon jet
the one-loop coefficient Γ0 = 4CA is a factor 9/4 larger
than in the case of a quark jet (for Nc = 3), leading to
even larger η values.

The discussion above may be generalized to the case of
massive QCD jets. If the quark field ψ in (5) has mass m,
then relations (5)–(8) remain valid, but the solution (9)
must be modified. In this case it is no longer possible to
write the solution in closed form, however a perturbative
expansion of the resummed spectral function can still be
obtained [59,60]. At one-loop order one finds
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z5∂z

(
1
z3

∂zφ

)
− z2(p2 − µ2)φ−m2R2φ = 0

H = µz2

Sint =
1
2

∫
d4x dz

√
gHφφ

〈O(p′)O(p)〉 ∝ δ(4)(p + p′)
(2π)4

(p2 − µ2)d−2

AdS/CFT/Unparticles
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S =
∫

d4p

(2π)4
φ†(p)

[
µ2 − p2

]2−d
φ(p)

F (x− y) =
[
∂2 − µ2

]2−d
δ(x− y)

Effective Action

S =
∫

d4xd4y φ†(x)F (x− y)φ(y)

nonlocal



F (x− y)→ F (x− y)W (x, y)

Minimal Gauge Coupling

W (x, y) = P exp
[
−igT a

∫ y

x
Aa

µdwµ

]

...

cf Mandelstam Ann Phys 19 (1962) 1



= −igT a 2pα + qα

2p · q + q2

[(
µ2 − (p + q)2

)2−d −
(
µ2 − p2

)2−d
]

Gauge Vertex



igΓaα(p, q) ∝ 2pα + qα

2p · q + q2

[(
µ2 − (p + q)2

)2−d −
(
µ2 − p2

)2−d
]

iqµΓaµ = ∆−1(p + q, m, d)T a − T a∆−1(p, m, d)

Ward-Takahashi 
Identity

= −igT a 2pα + qα

2p · q + q2

[(
µ2 − (p + q)2

)2−d −
(
µ2 − p2

)2−d
]



S = −
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d4x H†(∂2 + µ2)2−dH
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Unhiggs Model

S = −
∫

d4x H†(D2 + µ2)2−dH + λttR
H

Λd−1

(
t
b

)

L

+ h.c.



H =
1√
2
eiT aπa/vd

(
0

vd + h

)

−
∫

d4x λ

(
H†H

Λ2d−2
− V 2

2

)2

Unhiggs Model

S = −
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d4x H†(D2 + µ2)2−dH + λttR
H

Λd−1

(
t
b

)

L

+ h.c.
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m2
h ∼

Λ4−2d

16π2

LY = λt tR
H

Λd−1

(
t
b

)

L

m2
h = 3

(
λt

Λd−1

)2 Λ2

16π2
= 3

(mt

V

)2 Λ4−2d

16π2

Mass Divergence

Solve the little hierarchy problem?
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Figure 8: Qualitative behavior of Λmax as a function of d

Thus, Eq. (5.3) leads to a larger value of the maximum cutoff, Λmax, for larger values of d, as
in Figure 8. Thus, we can push the UV scale past the usual SM value of ∼ 1 TeV for values
of d greater than 1. For example, the cutoff can be near 10 TeV without much fine-tuning
for d ∼ 1.7.

6 Loop Induced Kinetic Term

As we mentioned in Section 2, loop effects will also induce terms in the Lagrangian of the
form

Lkin = − C

Λ2d−2
H†D2H (6.1)

where C is a dimensionless coefficient. Qualitatively, our analysis above is not affected by
this term. However, we can estimate its quantitative effect by comparing it with the kinetic
term in the original Lagrangian (2.3). The ratio, R, of the momentum scales between the
two terms is:

R =
C

Λ2d−2 p2

p2(2−d)
= C

(
p2

Λ2

)d−1

. (6.2)

Since we are considering values for an Unhiggs threshold around ≈ 100 GeV, we take
p ≈ 100 GeV. Inserting our previous value of Λ = 10 TeV, we find

R = C(.0001)d−1 . (6.3)

We expect C < 1 since it is a loop suppressed coefficient. For values of d near one, R ≈ C
and the loop induced term will have a relatively small quantitative effect. However, for
moderate values of d, R becomes extremely small and the term in Eq. (6.1) will have no
appreciable effect on the results of the previous sections. This loop induced term will affect
the region near d = 2 where a pure unparticle is highly gaugephobic [7] since it provides an
additional contribution to gauge couplings.

16

loop < tree



−g2Aa
αAb

β〈H†〉T aT b〈H〉
{

gαβ(d − 2)µ2−2d

−qαqβ

q2

[
(d − 2)µ2−2d −

(
µ2 − q2

)2−d −
(
µ2

)2−d

q2

]}

M2
W =

g2(2− d)µ2−2dv2d

4

Unhiggs and MW



Mh → −i
g4

4M2
W (2− d)µ2−2d

(−s)2−d

WW Scattering

unHiggs exchange is insufficient to 
unitarize WW scattering

at large s



Mhh = −i
g2

4M2
W

[
s +

(−s)2−d

(2− d)µ2−2d

]

WW Scattering

unHiggs 6 point vertex does 
unitarize WW scattering



Precision Measurements

Falkowski & Perez-Victoria, hep-ph/0901.3777
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Figure 4: The trajectories in the ∆S − ∆T plane for constant Unhiggs parameters ν, µ, R
and varying muh. For a given µ and ν, the UV scale Λ = 1/R is set to the maximum value
allowed by perturbativity (or to the Planck scale, if the former is larger). Different points
correspond to varying the Unhiggs mass muh in the range [50, 1000] GeV (red circles, from
left to right, in steps of hundred except for the first step). For reference, in each case we
plotted the trajectory in the SM when mh is varied in the range [50, 1000] GeV (solid black).

We conclude that the electroweak precision observables are consistent with the Unhiggs with
a mass gap of order 100 GeV, irrespectively of whether there is an isolated pole below the
continuum or not.

What about the direct searches at LEP? When the Unhiggs spectral function has a pole
well below the continuum (as is the case when muh

<
∼ µ), that pole behaves much like the

SM Higgs and the 115 GeV lower limit from LEP does apply. That is because in that case
the effective Unhiggs propagators reduce to the SM Higgs propagator for p2 " µ2 (including
p2 ∼ m2

uh, where the resonance is located). If, on the other hand, there is no isolated pole,
then the physical properties of the Unhiggs are vastly different and the LEP limits have to
be reconsidered.

In the SM, the cross section for the Higgs production in the Higgsstrahlung process is
proportional to

σSM(E) ∼
∫

dĒfσ(E − Ē)
mhΓh(Ē2)

(Ē2 − m2
h)

2 + m2
hΓh(Ē2)2

. (14)

Here, fσ is a Gaussian distribution of width σ, which naively accounts for experimental
uncertainties (we take σ = 10 GeV). Next, E is the center-of-mass energy of the emitted
Higgs boson, and Γh is the Higgs width. We focus here on the energies accesible at LEP,
E ∼ 100 GeV, in which case the latter is in practice the width of the H → bb̄ decay. For the

9
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ξ2 ≡ σ(e+e− → HZ)
σSM

1 1.2 1.4 1.6 1.8 2

d

0.2

0.4

0.6

0.8

1

Ξ2

m " 50 GeV

m" 75 GeV

Figure 7: ξ2 as a function of d for µ = 100 GeV, m = 75 GeV and µ = 100 GeV, m = 50
GeV

phase space goes to zero as d → 1 because of the fact that Ad=1 = 0. Also, the part of the
phase space containing the pole has the following d→ 1 limit:

lim
d→1

dΦh,pole(q
2) = 2πθ(q0)δ(q2 −m2) . (4.7)

Thus, for µ > m, the Unhiggs phase space in Eq. (4.6) does indeed reduce to the Standard
Model Higgs result.

Using Eqs. (4.2), (4.5) and (4.6), ξ2 can be calculated numerically as a function of d for
any values of the parameters µ and m. A plot of ξ2 vs. d for two pairs of µ and m is shown in
Figure (7). As expected, ξ2 falls as d gets larger and is approximately zero for d→ 2. This
shows that for moderate to high values of d, the suppression of the Unhiggs-Gauge couplings
allows for an Unhiggs lighter than 114 GeV to have evaded detection at LEP.

5 Yukawa Couplings and the UV cutoff

Consider the top Yukawa coupling given in Eq. (2.3) which leads to an htt interaction term

LY =
1√
2

λt

Λd−1
htt . (5.1)

From the usual top loop correction to the quadratic Unhiggs term in the action we find

δm4−2d
h =

3|λt|2

8π2
Λ4−2d . (5.2)

Qualitatively, we want the correction to the Unhiggs mass term to be at most of the
order of the tree level term to avoid excessive fine-tuning. This means we want

δm4−2d
h =

3|λt|2

8π2
Λ4−2d < µ4−2d . (5.3)
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Unhiggs at LEP
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Unhiggs at LHC

generically a light Unhiggs would be missed
at the LHC using current search strategies



Conclusions
massive unparticles with gauge interactions

are a new type of BSM physics

the Unhiggs is a new way to 
break electroweak symmetry

we need to identify the new LHC signals



Backup



ds2 =
R2

z2

(
dx2

µ − dz2
)

z > ε

Sbulk =
1
2

∫
d4x dz

√
g(gαβ∂αφ∂βφ + m2φ2)

d[O] = 2± ν = 2±
√

4 + m2R2

AdS/CFT

φ(p, z) = az2Jν(pz) + bz2J−ν(pz)



π

g
(
〈H†〉Aa

αT aΠ−Π†Aa
αT a〈H〉

)

×
[(

µ2 − q2
)2−d −

(
µ2

)2−d
]
qα/q2

Unhiggs



∆GB(q) = − i

(µ2 − q2 − iε)2−d − µ4−2d

Πabαβ(q) = −g2〈H†〉T aT b〈H〉 qαqβ

q4

×
[(

µ2 − q2
)2−d −

(
µ2

)2−d
]2

∆GB(q)

Unhiggs
π

gauge invariance maintained


