Prospects for QCD Physics at the Large Hadron Collider

Monica Dunford University of Chicago Aspen Winter Conference February 9th, 2009

Overview

- Overview of the LHC and the ATLAS and CMS experiments
- Physics of strong interactions
 - Underlying event studies
 - Minimum bias measurements
 - Jet production physics
 - Inclusive jet cross-section
 - Measurement of dijet mass and angle
- Conclusions

The Large Hadron Collider

Low Luminosity:
$$L \approx 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$$

 $\mathcal{L} \approx 10 \text{ fb}^{-1}/\text{year}$
High Luminosity: $L \approx 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 $\mathcal{L} \approx 100 \text{ fb}^{-1}/\text{year}$

- QCD physics at the LHC
 - Large cross-sections
 - One of the first physics results
 - Sensitive to new physics
 - Is the background to everything

The ATLAS Detector

- Coverage up to $|\eta| = 5$
- Inner Detector ($|\eta| < 2.5$):
 - Silcon pixel and strip detectors and Transition Radiation Tracker
 - 2T Solenoid field
- Calorimeters ($|\eta| < 5.0$):
 - High granularity liquid argon calorimeter
 - Scintillating Tile hadronic calorimeter
- Muon Spectrometer ($|\eta| < 2.7$):
 - 80 μ m resolution in drift tubes
 - 4T Toroid field
- Forward Cherenkov and zero-degree calorimeter partial coverage $|\eta| > 5.0$

<figure>

Lepton energy scale ~ 0.02% Jet energy scale ~ 1% Absolute luminosity < 5%

The CMS Detector

Lepton energy scale ~ 0.05% Jet energy scale ~ 1-2% Absolute luminosity < 5% Coverage up to $|\eta| = 5$

Inner Detector ($|\eta| < 2.5$):

- Silcon pixel and strip detectors
- 4T Solenoid field
- Calorimeters ($|\eta| < 5.0$)
 - Lead tungstate crystal EM calorimeter
 - Brass/Scintillator tile hadronic calorimeter
- Muon Spectrometer ($|\eta| < 2.4$)
- Gas chambers in iron return yoke Forward zero-degree calorimeter partial coverage $|\eta| > 5.0$

M. Dunford – Aspen Feb 9th, 2009

Underlying Event Studies

Modeling of underlying events is...

- Important for high P_t physics
- Necessary ingredient for understanding jet and lepton isolation, energy flow, jet tagging

M. Dunford – Aspen Feb 9th, 2009

Measuring Underlying Events

Different underlying event tunings need to reproduce the particle density as well as the average scalar P_t sum

M. Dunford – Aspen Feb 9th, 2009

Measurement of Minimum Bias

ATLAS Physics TDR Minimum bias interactions are a 10 dN_{ch}/dη at η=0 PYTHIA6.214 - ATLAS major background to all physics PYTHIA6.214 - CDF tune A PHOJET1.12 processes 8 ~ 2 interactions per beam crossing (low luminosity) pp interactions 6 UA5 and CDF data \sim 18 interaction per beam crossing (high luminosity) 4 A common definition of minbias ATLAS 2 σ_{dd} $\sigma_{tot} = \sigma_{elas} + \sigma_{sd} + \sigma_{sd}$ ' nd nonsingle elastic double diffractive⁰ 10² 10⁵ 10³ diffractive 10⁴ diffractive √s (GeV) Important measurement for first data

M. Dunford – Aspen Feb 9th, 2009

ATLAS Minimum Bias Analysis

An ATLAS and CMS Comparison

Jet Production Physics

Inclusive jet cross-section measurement...

- 1. Tests perturbative QCD in new energy regime
- 2. Sensitive to new physics
 - Will discuss sensitivity to compositeness, Z' and q* models
- 3. Tons of statistics and fast
- 4. Can be one of the first physics measurements for ATLAS and CMS

Jets/ 50 GeV 10⁵ 10⁴ QCD+10% jet energy uncert. Compositeness (5TeV scale) ሪን Compositeness (3TeV scale) 10 pb⁻¹ **Jet** η | < 1, 10³ 10² √s=14 TeV 10 **CMS** Preliminary **Gen-Level Simulation** 200 400 600 800 1000 1200 1400 Jet p_T (GeV)

QCD08, 7-12 July, 2008, hep-ex 0807.4961

CDF/D0 measurements up to jet P_t of 700 GeV

Díjet Mass Spectrum

Dijet mass is also sensitive to new physics like Z' models with masses 0.7, 2 and 5TeV shown here
 Dijet mass is also sensitive to new physics 10⁻¹ 10

Dijet Mass Definition

$$m = \sqrt{(E_1 + E_2)^2 - (\vec{P}_1 + \vec{P}_2)^2}$$

$$m = \sqrt{(E_1 + E_2)^2 - (\vec{P}_1 + \vec{P}_2)^2}$$

$$m = \sqrt{(E_1 + E_2)^2 - (\vec{P}_1 + \vec{P}_2)^2}$$

$$m = \sqrt{(E_1 + E_2)^2 - (\vec{P}_1 + \vec{P}_2)^2}$$

Current CDF/D0 dijet mass measurements up to 1400 GeV Limits on Z' mass (using dijet mass spectrum): 320GeV<m<740GeV

M. Dunford – Aspen Feb 9th, 2009

CMS Physics TDR

liet nl<

 $= 10 \, \text{fb}$

√s=14 TeV

QCD

Theoretical Systematic Uncertainties

- Parton distribution functions uncertainties is the major uncertainty for the inclusive jet crosssection and dijet mass measurements
 - Especially at high P_t and large dijet mass

For PDF uncertainties: ~65% at highest P_t and ~20% at the largest dijet masses

Experimental Systematic Uncertainties

- Small uncertainties in absolute jet energy scale result in large effects on the inclusive jet cross-section and dijet mass
- Even with large uncertainty on energy scale expected for early data and only 10pb⁻¹ are still sensitive to compositeness models

CDF/D0 analysis excludes Λ <2.7 TeV (quark-quark interactions)

 $(\Lambda \rightarrow \infty \text{ no compositeness})$

14

M. Dunford – Aspen Feb 9th, 2009

Establishing Jet Energy Scale

Need to establish good absolute jet energy scale uncertainty over a large range of jet P_t ~5-10% in first running

~1-2% long term

In-situ Measurement Process	Jet P, Range	
Z+Jets balancing	10 GeV < P _t < 100-200 GeV	Use in-situ processes
γ+Jets balancing	100-200 GeV < P _t < 500 GeV	to test energy scale
Multijet balancing	P _t > 500 GeV	over full P _t range

Searches with Dijet Ratio

- Measure dijet ratio to test for new physics (q* models shown here)
 - Absolute jet energy scale uncertainties cancel with the ratio

Dijet Ratio:
$$R = \frac{N(|\eta| < 0.5)}{N(0.5 < |\eta| < 1)}$$

Expect to be sensitive to q* masses of 2.5 TeV with 100pb⁻¹ CDF/D0 analysis excludes q* mass < 0.87 TeV

Conclusions

- QCD physics are important measurements especially for first data
- First data measurements should focus on
 - Underlying events: Important for generator tuning as well as understanding the systematic corrections to other physics processes
 - Minimum bias events: These events are the background to everything else. Important effect even at low luminosities
 - Jet Physics: Inclusive jet cross-section and dijet mass spectrum are very high statistics processes and are sensitive to new physics models. Important first data measurement in an energy regime never before explore

Backup Slides

Measuring Underlying Events

These two tunings produce the same particle density but Pythia tuning generates harder particles (for $\sqrt{s} = 14$ TeV)

M. Dunford - Aspen Feb 9th, 2009

A Low Luminosity Trigger

- For first low luminosity running a random trigger is inefficient for selecting a good minbias sample
- On ATLAS have designed for this purpose special scintillators (2.12<|η|<3.85)
- Form trigger either from special scintillators, random triggers or inner detector tracks

Analysis selects reconstructed tracks with $P_t > 150 \text{ MeV}$ Used to measure the number of primary charge particles per unit of η and per unit of P_t

Inclusive Photon Production

- Used to study underlying parton dynamics: Compton process is sensitive to the gluon distribution in the proton, $f_g(x)$
 - Requires a good knowledge of α_s
- Understanding the QCD photon production is a prerequisite for Higgs→γγ searches

M. Dunford – Aspen Feb 9th, 2009

Inclusive Photon Production

- High statistic process
- ATLAS and CMS both have high calorimeter granularity and $|\eta| < 2.5$
 - Necessary for good background rejection
- Main backgrounds due to QCD dijet where one jet fakes a photon and jets with π_0
 - Can be reduced by require photon candidates to be isolated

Measurement of Jet Multiplicity

- Multi-jet production is critical to many physics studies (ttbar production, SUSY searches, Higgs→ttbar or bbar)
 - QCD multi-jet events are backgrounds to all these processes
- The 2-jet to 3-jet crosssection ratio can be used to measure α_s

