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Astronomy’s Decadal Survey

e Prioritizes Projects for the coming
Decade

e Billions of Dollars at Stake

e The Fundamental Physics community
should be heard
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If you agree with the contents of this talk, go to
http://cmbpol .uchicago.edu
Look at the inflation paper and sign up. Your endorsement
will be appear on the White Paper sent to the Decadal
Committee and your name will appear on the paper
submitted to the arxiv.
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Tell your friends!
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Motivation for Inflation

Uniform CMB Sky

Homogeneou
s Universe at
t=380,000
years
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Motivation for Inflation

We have a coherent picture of cosmic evolution
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Motivation for Inflation

We have a coherent picture of cosmic evolution
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Where did the seeds of structure come from?
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Inflation: Early Dark Energy &
Acceleration

Distance between 2 spots in CMB
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Distance between 2 spots in CMB

Seeds of Structure:

Causally Connected
(Light Travel Distance)
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Distance between 2 spots in CMB

Seeds of Structure

Distance

Causally Connected
(Light Travel Distance)
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Evidence for Inflation:
Flathess

Inflation makes the universe so big that
curvature is irrelevant, so the universe should
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Evidence for Inflation: Scale
lnvariance

Perturbations should be close to scale invariant

D o [dk Py (k) & [dIn(k)k"™

with n close to 1 I

Probability
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Dunkley et al. 2008 N
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Evidence for Inflation: Coherence

« Pressure of radiation acts against clumping

- |If a region gets overdense, pressure acts to reduce
the density: restoring force
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Evidence for Inflation: Coherence

Vibrating String:
Characteristic
frequencies
because ends are
tied down

Temperature in the
Universe: Small
scale modes begin
oscillating earlier
than large scale
modes
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Evidence for Inflation:
Coherence

At any wavelength,

we are averaging
over many modes
with different

direction.
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Evidence for Inflation:
Coherence

If they do all start
out with the same
phase ...

first peak will be
well-defined
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Evidence for Inflation:
Coherence

As will first
trough ... and
all subsequent
peaks and
troughs

Clumpiness

Time/(400,000 yrs)

February 12, 2009 Scott Dodelson 13




though

d
@
N
-
O
-
e
O
-
>
(Vp)
d
O
-
W
) -
g}
(Vp)
W
2
O
S
o
=

“Trough”

First

First “Peak”

\ W
\.
1 Ll

A
\\\ww 5

/\
WY
A

A
9
X
|

R ».. \“‘4“\0\4
B () (

ilh!

AR

ssauldwn|)

__... ._. \ ,’
I
1

_: |

|

I

i
-:,.,__w,

. i
ssauidwny

‘ |

NS ARERIRHLY | N e
AN B / -
A X ¢ v 7. )

Time /(400,000 yrs)

Time /(400,000 yrs)
We will NOT get series of peaks and troughs!
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Evidence for Inflation:
Coherence

Observed pattern of peaks
and troughs point to early Multipole moment £
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Evidence for Inflation

O Position of first peak

d Temporal phases set early on as
evidenced by peak structure

d Shape of primordial spectrum close to
scale-invariant
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Evidence for Inflation

O Position of first peak

d Temporal phases set early on as
evidenced by peak structure

d Shape of primordial spectrum close to
scale-invariant

Can we obtain more direct evidence for
inflation and the dark energy which drives
it?

February 12, 2009 Scott Dodelson 16




Evidence for Inflation

Gravity waves are also produced
during inflation. These are

detectable with upcoming CMB
experiments.
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Quantum mechanical fluctuations
during inflation are stretched to
astronomical scales

(—1+20 0 0 0
0 a’(1+2® +h,) a’h 0

X
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X

X 0 0 a*(1+2®)]

Inflation produces perturbations to scalar
potential ® and these grow to be majestic
structure we see today... but also tensor
perturbations h
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Quantum mechanical fluctuations
during inflation are stretched to
astronomical scales
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X
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Inflation produces perturbations to scalar
potential ® and these grow to be majestic
structure we see today... but also tensor

perturbations h
What is the best way to detect these?
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Compton scattering of unpolarized
anisotropic radiation produces

X
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Compton scattering of unpolarized
anisotropic radiation produces

\ « Require Quadrupole
T (small be(%ore
recombination)
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- Require Compton
scattering (rare after
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Compton scattering of unpolarized
anisotropic radiation produces
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Require Compton
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 Signals factor of 10
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smaller than
temperature
anisotropies

- Generated during 2

epochs: pre-

recombination

(z~1000) and after

reionization (z~10)
19




Polarization field decomposed
into E- and B- modes
\/_\\
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Scalar perturbations () source E but not B. Tensor perturbations

(h) source (E,B), so B-mode detection would be clear signal of
inflation-produced gravity waves.
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Results
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New QUAD Results

, EE - only >2¢ detections plotted BB 95% confidence upper limits
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Ambitious (But Realistic) Plans
to /Det_ect B-Modes
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Amplitude of B-mode signal
tied to physics of inflation
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very small-field inflation
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Tensor/scalar ratio teaches us about
the high energy physics driving
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Beyond Gravity Waves

Running of the Spectrum Non-gaussianity
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Conclusions: If B-modes are
detected ...

1 Alternatives to inflation will be ruled
out

4 Pin down the energy scale driving
inflation

d Prove Symmetries of the UV-complete
theory

Remember http://cmbpol .uchicago.edu
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Challenges

d B signalis
unknown but < 0.1
microK

A Characteristic
double peaked (I=6

and [=100)
signature

d Foregrounds will
likely be limiting
factor

Qr=0.01 (E,~101'
GeV) might be best
we can do
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