Lattice Gauge Theory: An Ox for OCD

Andreas S. Kronfeld 党 February 12, 2009 Aspen Winter Conference

Lattice QCD

Lattice Gauge Theory

$$
\left.\langle\bullet\rangle=\frac{1}{Z} \int \begin{array}{cc}
\mathscr{D} U D \psi \mathcal{D} \bar{\Psi} \\
M C & \operatorname{hand}
\end{array}\right]
$$

* Infinite continuum: uncountably many d.o.f.
* Infinite lattice: countably many; used to define QFT
* Finite lattice: can evaluate integrals on a computer;
dimension $\sim 10^{8}$

$$
L=N_{S} a
$$

Some Jargon

* QCD observables (quark integrals by hand):

$$
\langle\bullet\rangle=\frac{1}{Z} \int \mathcal{D} U \prod_{f=1}^{n_{f}} \operatorname{det}\left(D D+m_{f}\right) \exp \left(-S_{\text {gauge }}\right)[\bullet]
$$

- Quenched means replace det with 1.
* Unquenched means not to do that.
* Partially quenched doesn't mean " $n f$ too small" but $m_{\text {val }} \neq m_{\text {sea }}$, or even $D_{\text {val }} \neq D_{\text {sea }}$ ("mixed action").

Sea Quarks

* Staggered quarks, with rooted determinant, $\mathrm{O}\left(a^{2}\right)$.
* Wilson quarks, $\mathrm{O}(a)$:
* tree or nonperturbatively $\mathrm{O}(a)$ improved;
* twisted mass term - auto $\mathrm{O}(a)$ improvement.
* Ginsparg-Wilson (domain wall or overlap), $\mathrm{O}\left(a^{2}\right)$:
* $I D \gamma_{5}+\gamma_{5} I D=2 a I D^{2}$ implemented $w / \operatorname{sign}\left(D D_{\mathrm{W}}\right)$.
* Many numerical simulations with sea quarks are called (perhaps misleadingly) "full QCD."
* $n_{f}=2$: with same mass, omitting strange sea;
* $n_{f}=3$: may (or may not) imply 3 of same mass;
$* n_{f}=2+1$: strange sea + two as light as possible;
* $n_{f}=2+1+1$: add charmed sea to $2+1$.
* "Full QCD" can also mean $m_{\text {val }}=m_{\text {sea }}, I D_{\text {val }}=I D_{\text {sea }}$.

Correlators

* Two-point functions for masses $\pi(t)=\bar{\psi}_{u} \gamma_{5} S \psi_{d}$:

$$
\left.\left\langle\pi(t) \pi^{\dagger}(0)\right\rangle=\sum_{n}|\langle 0| \hat{\pi}| \pi_{n}\right\rangle\left.\right|^{2} \exp \left(-m_{\pi_{n}} t\right)
$$

* Two-point functions for decay constants:

$$
\left\langle J(t) \pi^{\dagger}(0)\right\rangle=\sum_{n}\langle 0| \hat{J}\left|\pi_{n}\right\rangle\left\langle\left\langle\pi_{n}\right| \hat{\pi}^{\dagger} \mid 0\right\rangle \exp \left(-m_{\pi_{n}} t\right)
$$

* Three-point functions for form factors, mixing:

$$
\left.\begin{array}{rl}
\left\langle\pi(t) J(u) B^{\dagger}(0)\right\rangle=\sum_{m n}\langle 0| \hat{\pi}\left|\pi_{m}\right\rangle & \left.\left(\pi_{n}|\hat{J}| B_{m}\right\rangle\right\rangle
\end{array}\left\langle B_{m}\right| \hat{B}^{\dagger}|0\rangle\right)
$$

Scope of this talk

* Lattice QCD is now a broad field:
- SM parameters and flavor physics;
* nucleon properties and excited baryons;
- hadron-hadron interactions;
- QCD thermodynamics;
* walking QCD - varying $n f$, so $\beta\left(\alpha_{\mathrm{s}}\right) \approx 0$.
* USQCD overview, arXiv:0807.2220.

Hadron Spectrum

2+1 Sea Quarks! HPQCD, MILC, Fermilab Lattice, hep-lat/0304004

Predictions

* Semileptonic form factor for $D \rightarrow K l v$
* Mass of B_{c} meson
* Charmed decay constants

Hadron Spectrum 1 MILC Collaboration, cf. arXiv:0711.0021

$$
\leftrightarrow \quad a=0.12 \& 0.09 \mathrm{fm}
$$

- $\mathrm{O}\left(a^{2}\right)$ staggered
* FAT7 smearing
- $2 m_{l}<m_{q}<m_{s}$
* $\pi, K, \mathrm{Y}(1 \mathrm{P})$ input

QCD postdicts the low-lying hadron masses!

Hadron Spectrum 2 PACS-CS Collaboration, PRD 79, 034503 (2009).

cf. earlier work by CP-PACS

$$
a=0.091 \mathrm{fm}
$$

NP O(a) Wilson

* no smearing
* $m_{q} \approx 1.3 \mathrm{~m}_{l}$
* π, K, Ω input

QCD postdicts the low-lying hadron masses!

Hadron Spectrum 3
 BMW Collaboration: Science 322, 1224 (2008).

QCD postdicts the low-lying hadron masses!

$$
m=E / c^{2}
$$

QCD Parameters

Quark Masses \& $\alpha_{\text {s }}$

* Light quark masses (MILC+HPQCD):

$$
\begin{gathered}
m_{u}=1.9 \pm 0.2 \mathrm{MeV} \\
m_{d}=4.6 \pm 0.3 \mathrm{MeV}, \\
m_{s}=88 \pm 5 \mathrm{MeV}
\end{gathered}
$$

with two-loop matching.

* Heavy quark masses (next slides).
* Strong coupling α_{s} (after that).

Charmed Quark Mass HPQCD+Karlsruhe, arXiv:0805.2999

* Moments of charmonium correlators:

$$
G_{n}=\sum_{\boldsymbol{x}, t} t^{n}\left\langle m_{c} \bar{c} \gamma_{5} c(\boldsymbol{x}, t) m_{c} \bar{c} \gamma_{5} c(\mathbf{0}, 0)\right\rangle
$$

computed with lattice QCD and with continuum perturbation theory yield quark mass and α_{s} [Bochkarev \& de Forcrand, hep-lat/9505025].

* Any channel would do; like using measurements of $e^{+} e^{-} \rightarrow$ hadrons for vector-vector channel.
* Several tactics to reduce discretization effects to $\mathrm{O}\left(\alpha_{\mathrm{s}}\left(m_{c} a\right)^{2,4, \ldots}\right)$.
* HPQCD: HISQ valence on $2+1$ asqtad sea, with $a=0.15,0.12,0.09,0.06 \mathrm{fm}$.
* Karlsruhe: PT for moments through α_{s}^{3}.
* From $G_{6} \& G_{8}$ of $j 5 j_{5:} m_{c}\left(m_{c}\right)=1.268(9) \mathrm{GeV}$.
* Compare $e^{+} e^{-} j_{\mu} j_{\mu}: m_{c}\left(m_{c}\right)=1.268(12) \mathrm{GeV}$.
$\mu=3 \mathrm{GeV}$

Strong Coupling α_{s}

- Charmonium moments:
* $\alpha_{s}=0.1174(12)$
* Wilson loops:

* $\alpha_{s}=0.1183(8)$, HPQCD, arXiv:0807.1687;
* $\alpha_{s}=0.1192(11)$, Maltman, arXiv:0807.2020;
* $\alpha_{\mathrm{s}}=0.1185(9)$, PDG non-lat average (2008).

PDG 2008

QCD of hadrons $=$ QCD of partons

Flavor Physics

CKM UT Now

Plot from Ruth Van de Water

CKM UT 2014

Plot from Ruth Van de Water

Scope of this talk

* Neutral meson mixing: K, B, B_{s}.
* Semileptonic form factors:
* $K \rightarrow \pi / \nu$ for $\left|V_{u s}\right|:$ RBC+UKQCD, 2007
- $D \rightarrow K / v, D \rightarrow \pi / v:$ Fermilab+MILC, 2004
$\Delta \rightarrow D^{\prime \prime} / v$ for $\left|V_{c b}\right| ; B \rightarrow \pi / v$ for $\left|V_{u b}\right|$
* Leptonic decay constants: $f_{\pi}, f_{K}, f_{D}, f_{D_{e},}, f_{B}$.

$\left|V_{c b}\right|$

alia et Jack Laiho et al., arXiv:0808.2519

* $\left|V_{u c}\right|,\left|V_{u b}\right|$, and $\left|V_{c b}\right|$ are the three real parameters of the CKM matrix.
* $\left|V_{c b}\right|$ normalizes the unitarity triangle: enters all flavor physics.
* Inclusive $b \rightarrow c / v: \mathrm{OPE}+\mathrm{PT}+$ measured moments.
© Exclusive $B \rightarrow D^{*} / v$: (zero recoil) form factor:

$$
\mathcal{F}(1)=h_{A_{1}}(1), \quad\left\langle D^{*}\right| \mathcal{A}_{\mu}|B\rangle=i \sqrt{2 m_{D^{*}} 2 m_{B}} \bar{\varepsilon}_{\mu}^{*} h_{A_{1}}(1)
$$

* Previous quenched calculation (2001):

$$
\begin{array}{r}
\mathcal{F}(1)=0.913_{-0.017}^{+0.024} \pm 0.016_{-0.014-0.016-0.014}^{+0.003+0.000+0.006} \\
\text { stats match a } \quad \chi \text { PT } \quad n_{f}=0
\end{array}
$$

used till now with HFAG $\left|V_{c b}\right| \mathcal{F}(1)$ to get $\left|V_{c b}\right|$.

* Three double ratios, devised so that all uncertainties scale with $\mathcal{F}-1$, not \mathcal{F}.
* Update to $2+1$ sea quarks with a single ratio more direct \& much less computer time.
* Also introduces ratios of matrix elements to disentangle chiral extrapolation from heavyquark discretization effects:

$$
\begin{aligned}
\mathcal{R}_{\text {val }}\left(m_{x}, \hat{m}^{\prime}, m_{s}^{\prime}, a\right) & :=\frac{h_{A_{1}}\left(m_{x}, \hat{m}^{\prime}, m_{s}^{\prime}, a\right)}{h_{A_{1}}\left(m_{x}^{\text {fid }}, \hat{m}^{\prime}, m_{s}^{\prime}, a\right)} \\
\mathcal{R}_{\text {sea }}\left(\hat{m}^{\prime}, m_{s}^{\prime}, a\right) & :=\frac{h_{A_{1}}\left(m_{x}^{\text {fid }}, \hat{m}^{\prime}, m_{s}^{\prime}, a\right)}{h_{A_{1}}\left(m_{x}^{\text {fid }}, \hat{m}^{\text {fid }}, m_{s}^{\text {fid }}, a\right)} .
\end{aligned}
$$

* Reconstruct

$$
\begin{aligned}
h_{A_{1}}= & h_{A_{1}}\left(m_{x}^{\mathrm{fid}}, \hat{m}^{\mathrm{fid}}, m_{s}^{\mathrm{fid}}, a \rightarrow 0\right) \\
& \times \mathcal{R}_{\text {val }}\left(m_{x}, \hat{m}^{\prime}, m_{s}^{\prime}, a\right) \times \mathcal{R}_{\text {sea }}\left(\hat{m}^{\prime}, m_{s}^{\prime}, a\right)
\end{aligned}
$$

$\mathcal{F}(1)=0.921 \pm 0.013 \pm 0.008 \pm 0.008 \pm 0.014 \pm 0.007$
stats $g_{D^{*} D \pi} \quad \chi \mathrm{PT}$ match m_{ℓ}

$\left|V_{u b}\right|$

alia et Ruth Van de Water, arXiv:0811.3640

* $\left|V_{u c}\right|,\left|V_{u b}\right|$, and $\left|V_{c b}\right|$ are the three real parameters of the CKM matrix.
* $\left|V_{u b}\right|$ gives a tree constraint comparable to $\sin 2 \beta$.
* Inclusive $b \rightarrow u / v$: keep control of OPE (or shape functions, or ...) in region with no charm.
* Exclusive $B \rightarrow \pi / v$: form factor $f_{+}\left(q^{2}\right)$

$$
\langle\pi| \mathcal{V}_{\perp}^{\mu}|B\rangle=\left(p_{B}+p_{\pi}\right)_{\perp}^{\mu} f_{+}\left(q^{2}\right), \quad q \cdot p_{\perp}=0
$$

* Problem to determine $\left|V_{u b}\right|$:
* lattice best when p_{π} small, so $q^{2} \approx q_{\max }^{2}$,
* but event rate highest when $q^{2} \approx 0$.
* Until now: find least bad q^{2} of both worlds, or introduce Ansatz for q^{2} dependence.
* Here: a model independent simultaneous fit.

Let $z=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}, \quad \begin{aligned} & t_{ \pm}=\left(m_{B} \pm m_{\pi}\right)^{2} \\ & t_{-}<t_{0}<t_{+}\end{aligned}$ inspired by unitarity.

* For $B \rightarrow \pi / v$ kinematics $-0.34<z<0.22$.
* Unitarity guarantees convergent expansion in $z(t)$:

* New approach
* fit lattice \& expt separately: compare a_{k} / a_{0};
* fit lattice \& expt together, yielding $\left|V_{u b}\right|$.

Lattice QCD + 12-bin BaBar measurement.

4 fit parameters: $\left|V_{u b}\right|, a_{0}, a_{1}, a_{2}$.

Fermilab Lattice + MILC

$\left|V_{c b}\right| \&\left|V_{u b}\right|$

* Using $\mathcal{F}(1)$ to get $\left|V_{c b}\right|$: $10^{3}\left|V_{c b}\right|=38.7(9)(10)$ with latest HFAG.
* Compared to inclusive:
$10^{3}\left|V_{c b}\right|=41.6(8)$
from HFAG/ICHEP08.
* Final z-fit to get $\left|V_{u b}\right|$:
$10^{3}\left|V_{u b}\right|=3.38(36)$
with BaBar 12 -bin data.
* Compared to inclusive:
$10^{3}\left|V_{u b}\right|=(3.76-4.87) \pm 0.35$
from HFAG/ICHEP08.

Being sorted out for CKM 2008 report.

$f_{D J}$ Puzzle

f_{D} and f_{D}

* These are thought of as tests of (lattice) QCD.
* Experiments (recently) yield $\left|V_{c}\right| f_{D}$ and $\left|V_{c a l}\right| f_{D_{s}}$:
* $\left|V_{c x}\right|$ from CKM unitarity.
* First unquenched calculations [Fermilab/MILC] agreed, at 7% level, with first good measurements (CLEO for D, BaBar for D_{s}).

$D_{s} \rightarrow l v$

* $D_{s} \rightarrow / v$ should be the easiest leptonic decay for lattice QCD.
* A simple matrix element $\langle 0| \bar{s} \gamma_{\mu} \gamma_{5} c\left|D_{s}\right\rangle=i f_{D_{s}} p_{\mu}$.
* No light valence quarks.
* Counting experiment at CLEO, B factories.
* New physics thought to be very unlikely.

And then something funny happened (end 2007)...

Updates from FPCP (CLEO) and Lat'08 ...

With CLEO's papers of January 12, 2009

$$
\chi^{2} / \mathrm{dof}=0.73
$$

BaBar
 CLEO
 Belle
 CLEO τv
 CLEO e $\nu \nu$
 Fermilab/MILC HPQCD

a 3.0σ discrepancy, or $2.5 \sigma \oplus 1.9 \sigma$.

A Puzzle

$$
B\left(D_{s} \rightarrow \ell v\right)=\frac{m_{D_{s}} \tau_{D_{s}}}{8 \pi} f_{D_{s}}^{2}\left|G_{F} V_{c s}^{*} m_{\ell}\right|^{2}\left(1-\frac{m_{\ell}^{2}}{m_{D_{s}}^{2}}\right)^{2}
$$

© Experimental errors?

- Radiative corrections?
- CKM?
* Lattice QCD?
* Unlikely: stats limited.
- No: 1-2\%
* No: need $\left|V_{c s}\right|>1.1$.
* Let's see.

As the lattice gets finer, the discrepancy grows:

263.1 ± 6.7
MeV

HPQCD
241 ± 3
linear in $a^{2}: 239$; quad in $a^{2}: 242$;
linear in $a^{4}: 245$.

If m_{c} (set from η_{c}) were retuned to flatten this, $f_{D_{d}}($ at $a \neq 0)$ would not change much.

Error Budget

$$
\Delta_{q}=2 m_{D q}-m_{\eta c}
$$

	f_{K} / f_{π}	f_{K}	f_{π}	$f_{D_{s}} / f_{D}$	$f_{D_{s}}$	f_{D}	Δ_{s} / Δ_{d}
r_{1} uncerty.	0.3	1.1	1.4	0.4	1.0	1.4	0.7
a^{2} extrap.	0.2	0.2	0.2	0.4	0.5	0.6	0.5
Finite vol.	0.4	0.4	0.8	0.3	0.1	0.3	0.1
$m_{u / d}$ extrap.	0.2	0.3	0.4	0.2	0.3	0.4	0.2
Stat. errors	0.2	0.4	0.5	0.5	0.6	0.7	0.6
m_{s} evoln.	0.1	0.1	0.1	0.3	0.3	0.3	0.5
m_{d}, QED, etc.	0.0	0.0	0.0	0.1	0.0	0.1	0.5
Total \%	0.6	1.3	1.7	0.9	1.3	1.8	1.2

charmed sea $\ll 1 \%$?

Other Results

arXiv:hep-lat/0610092 \& arXiv:0706.1726 [hep-lat]
what expt HPQCD

$m_{J / \psi}-m_{\eta c}$	118.1	$111 \pm 5^{*}$	MeV
$m_{D d}$	1869	1868 ± 7	MeV
$m_{D s}$	1968	1962 ± 6	MeV
Δ_{s} / Δ_{d}	1.260 ± 0.002	1.252 ± 0.015	
f_{π}	130.7 ± 0.4	132 ± 2	MeV
f_{K}	159.8 ± 0.5	157 ± 2	MeV
f_{D}	$205.8 \pm 8.9^{*}$	207 ± 4	MeV

"CLEO arXiv:08062112 \ddagger annihilation corrected

What if

* ... the discrepancy is real?
* Then it must be non-Standard physics.
* How wacky would a non-Standard model be?
* It turns out particles that are already being considered can do the trick.
* B.A. Dobrescu \& ASK, arXiv: 0803.0512

New Particles

* Effective interactions

$$
\mathcal{L}_{\mathrm{eff}}=\frac{C_{A}^{\ell}}{M^{2}}\left(\bar{s} \gamma_{\mu} \gamma_{5} c\right)\left(\overline{\mathrm{v}}_{L} \gamma^{\mu} \ell_{L}\right)+\frac{C_{P}^{\ell}}{M^{2}}\left(\bar{s} \gamma_{5} c\right)\left(\overline{\mathrm{v}}_{L} \ell_{R}\right)+\text { H.c. }
$$

can be induced by heavy particles of charge +1 , $+2 / 3,-1 / 3$.

* Charged Higgs, new W^{\prime}; leptoquarks.

Beyond SM

* New W' boson: unlikely.
- Charged Higgs:
* Model II destructively interference;
* BAD \& ASK found new model.
* Leptoquarks:
* $J=0,(3,1,-1 / 3)$, aka \tilde{d}, can explain the effect.
* Charged Higgs model predicts a similarlysized deviation in $D \rightarrow l v$, now disfavored:

LHC

* The generic bounds on mass/coupling:
$\frac{M}{\left(\operatorname{Re} C_{A, P}^{\ell}\right)^{1 / 2}} \lesssim\left\{\begin{array}{l}710 \mathrm{GeV}, \quad 920 \mathrm{GeV} \text { for } \ell=\tau \\ 850 \mathrm{GeV}, 4500 \mathrm{GeV} \text { for } \ell=\mu\end{array}\right.$
any non-Standard explanation of the effect is observable at the LHC.
* Leptoquarks: $g g \rightarrow \tilde{d} \tilde{d} \rightarrow \ell_{1}^{+} \ell_{2}^{-} j_{c} j_{c}$.

Conclusions

* Lattice QCD with $2+1$ staggered sea quarks has provided many results since 2003;
* now $2+1$ Wilson and DWF sea too.
* Broad, and often precise, agreement with experiment in hadron masses, quarkonium splittings, decay properties.
* Precise agreement of α_{s} and heavy-quark masses, where pQCD also reliable.
* The outlier is $f_{D_{d}}$, which should be eavy:
* valence quarks aren't light;
* PCAC normalization.
* Experimental statistical error is yardstick for discrepancy: with $2 \times$ (lattice error) still 2.4σ.
* CLEO done; BaBar \& Belle could revisit; BES will go further in a few years.
* If new particle, LHC will make them.

