Aspen Winter Conference 2009 – The Year of the Ox

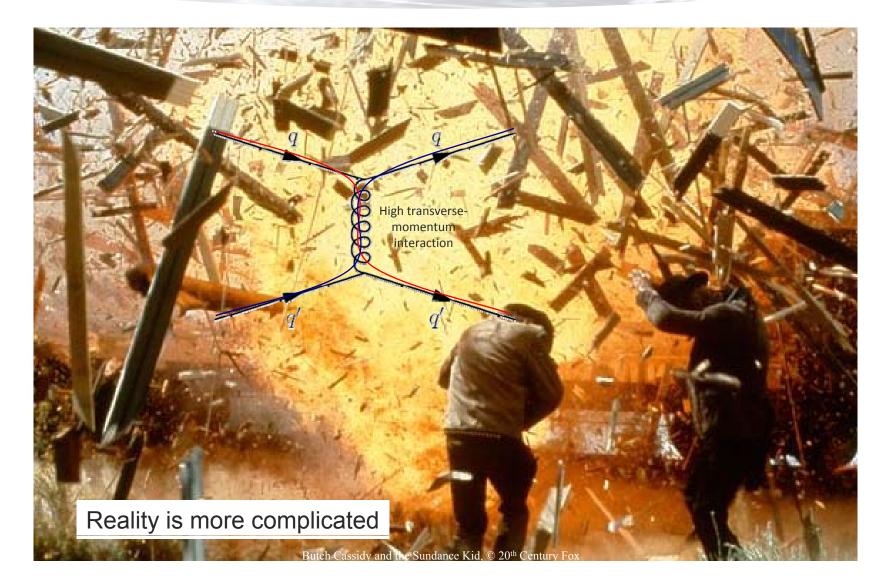
(towards) Theoretical Understanding of Quantum Chromodynamics at Hadron Colliders

Peter Skands Theoretical Physics, Fermilab

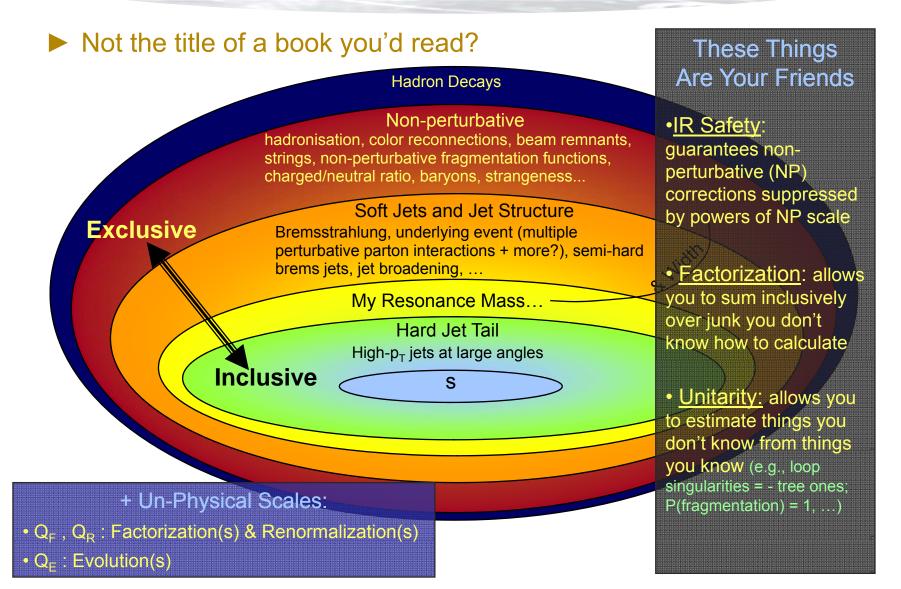
Overview

Disclaimer: gory details not possible in 25 mins!

Calculating Collider Observables


• Three Ways to High Precision

► The Road to High Precision for Everyone

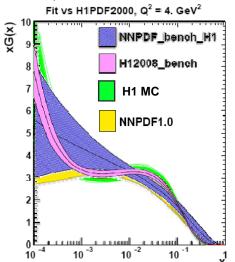

- What we want
 - High precision: model constraints + window to higher scales
- What we got
- How to get what we want
 - No alternative: solve QCD

Calculating Collider Observables

Factorization, Infrared Safety, and Unitarity

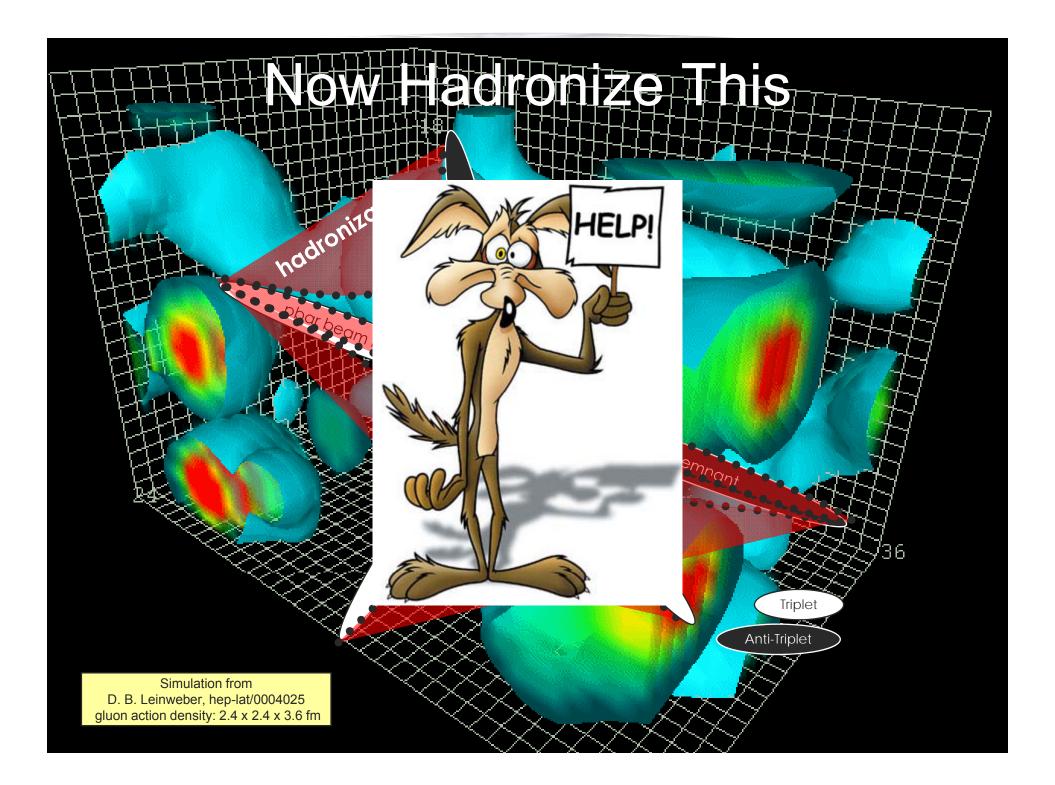
The Way of the Chicken

► Who needs QCD? I'll use leptons


- Sum inclusively over all QCD
 - Leptons almost IR safe by definition
 - WIMP-type DM, Z', EWSB \rightarrow may get some leptons
- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
 - At least need well-understood PDFs
 - High precision = higher orders → enter QCD
- Isolation \rightarrow indirect sensitivity to dirt
- Fakes \rightarrow indirect sensitivity to dirt
- Not everything gives leptons
 - Need to be a lucky chicken ...

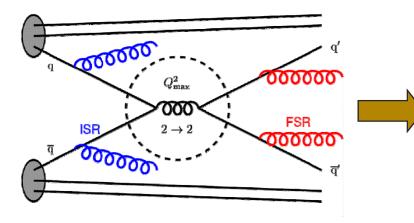
The unlucky chicken

• Put all its eggs in one basket and didn't solve QCD


The Way of the Fox

► I'll use semi-inclusive observables

- Sum inclusively over the worst parts of QCD
 - Still need to be friends with IR safety → jet algs
 - FASTJET
 Cacciari, Salam, Sovez: JHEP 0804(2008)063 Cone → "anti-kT" ~ IR safe cone
- Beams = hadrons for next decade (RHIC / Tevatron / LHC)
 - Still need well-understood PDFs
 - High precision = more higher orders → more QCD
- Large hierarchies (s, m₁, m₂, p_{Tjet1}, p_{Tjet2}, ...) → Careful !
 - Huge enhancements caused by leaps towards classical limit
 - Perturbative series "blows up" → cannot truncate at any fixed order
 - For 600 GeV particles, a 100 GeV jet can be "soft" Alwall, de Visscher, Maltoni: JHEP 0902(2009)017
 - Use infinite-order approximations = parton showers
 - Only "LL" \rightarrow not highly precise + only good when **everything** is hierarchical
 - \Box Need to combine with explicit matrix elements \rightarrow matching (more later)
 - Still, non-factorizable + non-pert corrections set an ultimate limit



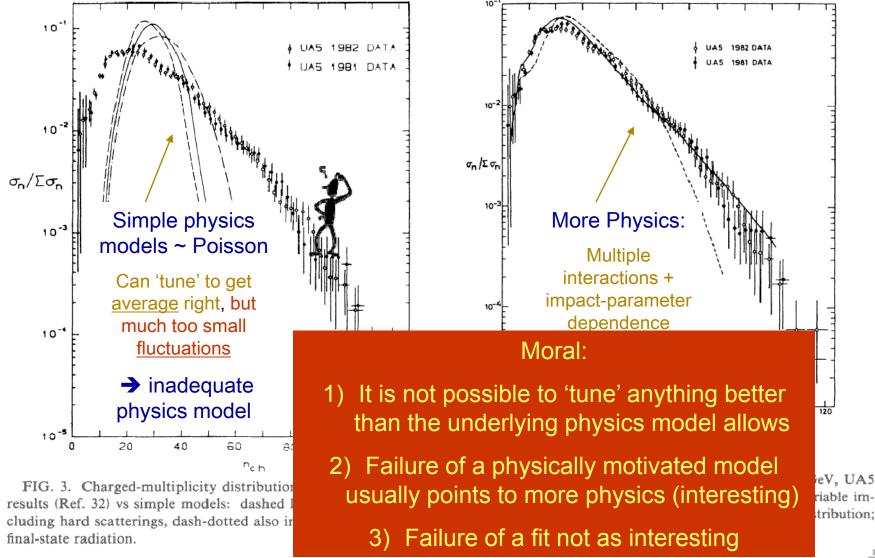
The Way of the Ox

► Calculate Everything: **solve QCD** → requires compromise

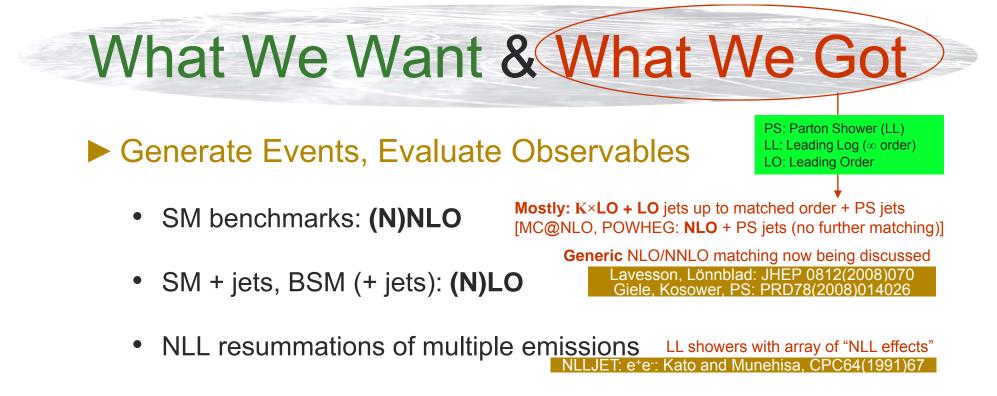
roughly

- Improve Born-level perturbation theory, by including the 'most significant' corrections → complete events → any observable you want
- 1. Parton Showers
- 2. Matching
- 3. Hadronisation
- 4. The Underlying Event

- 2. Finite Terms, "K"-factors
- 3. Power Corrections (more if not IR safe)


4. ?

(+ many other ingredients: resonance decays, beam remnants, Bose-Einstein, ...) Asking for complete events is a tall order ...



Classic Example: Number of tracks

UA5 @ 540 GeV, single pp, charged multiplicity in minimum-bias events

Theoretical Understanding of QCD - 9

- Theory of the Underlying Event (will return to later) Phenomenological Models Multiple Parton Interactions
- Systematically improvable non-perturbative models
 - Phenomenological Models
 (Includes non-perturbative BSM, e.g., hidden-valley)
 Non-interacting Clusters ↔ Strings
- Complete Evaluation of Remaining Uncertainties
 - Monte Carlos with Uncertainty Bands

"Herwig ÷ Pythia" (+ MAX/MIN)

The Matching Game

- [X]_{MF} + shower already contains sing_{LL}{ [X + n jet]_{MF} }
 - So we really just missed some finite bits, not the entire ME!
 - Adding full [X + n jet]_{ME} = overkill → LL singular terms would be <u>double-counted</u>

Solution 1: "Additive" (most widespread)

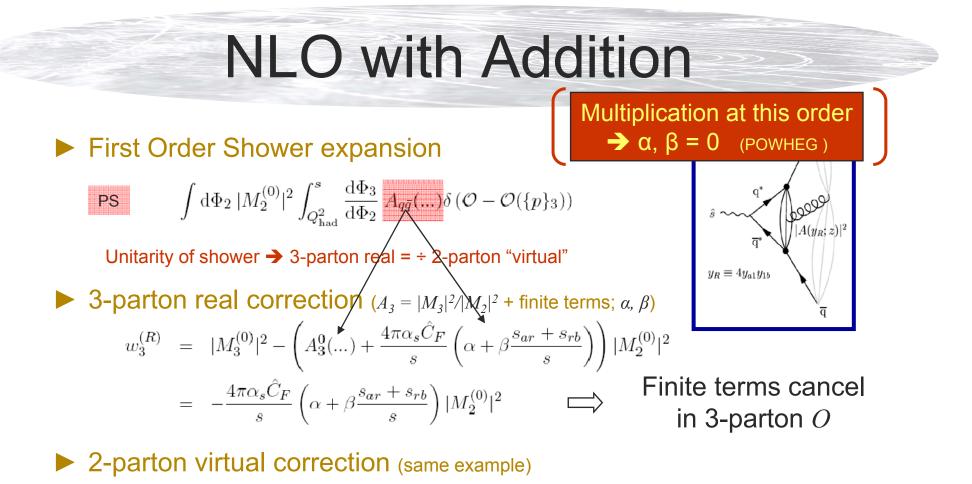
- Work out the difference and correct by *that amount*
- \rightarrow add compensating [X + n jet]_{MF} events, with double-counting subtracted out

 $w_n = [X + n jet]_{ME} - Shower\{w_{n-1,2,3,..}\}$

- WITH phase space cuts ("matching scale"): Herwig, CKKW, MLM, ARIADNE
- WITHOUT phase space cuts: MC@NLO (but only 1 jet + has negative weights)

Solution 2: "Multiplicative" Sjöstrand, Bengtsson : Nuc Phys B289(1987)810; PLB185(1987)435

Seymour, CPC90(1995)95


+ many more recent

+ one or two more recent . Work out the <u>ratio</u> between PS and ME \rightarrow multiply PS by that ratio (< 1 if PS > ME)

 $P_n = [X + n jet]_{MF} / Shower{[X+n-1 jet]_{MF}}$

- Positive weights, auto-unweighting, no matching scale, exponentiates, (idiot proof)
 - At LO: Pythia (only 1 jet but has positive weights)
 - At NLO: POWHEG (only 1 jet but has positive weights)
 - VINCIA/GeNeVa: generalized to multijets, now aiming for NNLO (+ NLL) (+ uncertainty bands)

Controlling the Calculation

- In a matched shower calculation, there are many dependencies on things not traditionally found in matrix-element calculations:
- ► The final answer will depend on:
 - The choice of shower evolution "time"
 - The splitting functions (finite terms not fixed)
 - The phase space map ("recoils", $d\Phi_{n+1}/d\Phi_n$)
 - The renormalization scheme (vertex-by-vertex argument of α_s)
 - The infrared cutoff contour (hadronization cutoff)

VINCIA VIRTUAL NUMERICAL COLLIDER W **H INTERLEAVED ANTENNAE**

Gustafson, PLB175(1986)453; Lönnblad (ARIADNE), CPC71(1992)15. Azimov, Dokshitzer, Khoze, Troyan, PLB165B(1985)147 Kosower PRD57(1998)5410; Campbell, Cullen, Glover EPJC9(1999)245

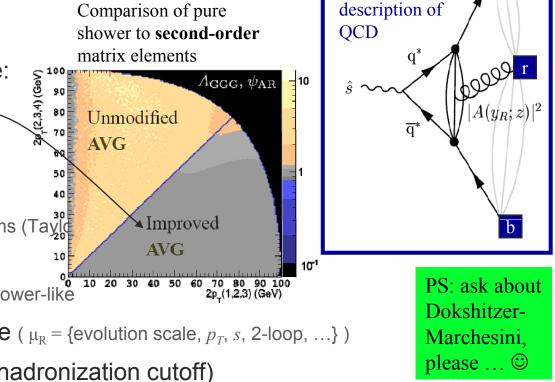
Dipoles

– a dual

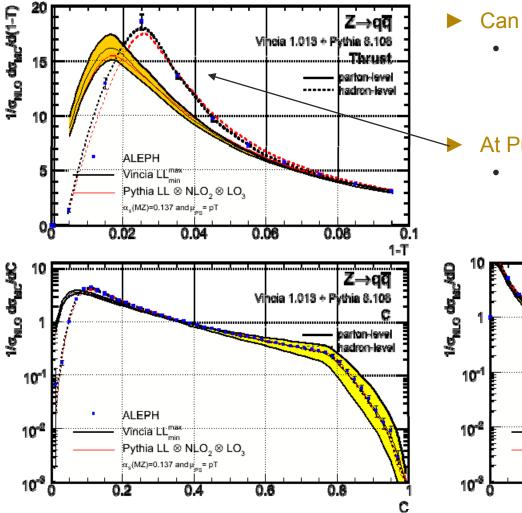
(=Antennae, not CS)

a

Based on Dipole-Antennae

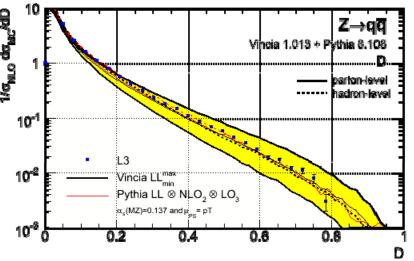

- Shower off color-connected pairs of partons
- Plug-in to PYTHIA 8 (C++)

So far:

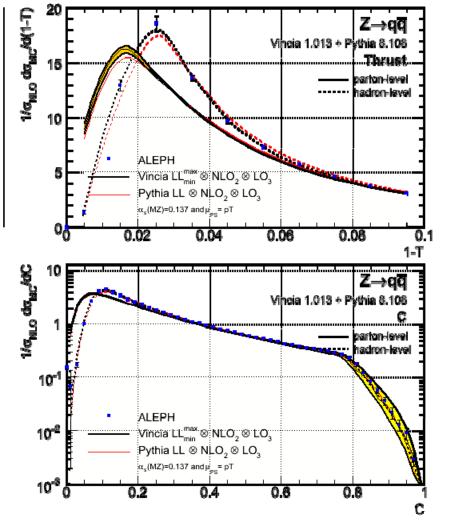

- Choice of evolution time:
 - pT-ordering —
 - Dipole-mass-ordering
 - Thrust-ordering
- Splitting functions
 - QCD + arbitrary finite terms (Taylo
- Phase space map
 - Antenna-like or Parton-shower-like
- **Renormalization scheme** ($\mu_R = \{\text{evolution scale}, p_T, s, 2\text{-loop}, ...\}$)
- Infrared cutoff contour (hadronization cutoff)
 - Same options as for evolution time, but independent of time \rightarrow universal choice

Giele, Kosower, PS: PRD78(2008)014026 + Les Houches 'NLM' 2007

VINCIA in Action NTENNAE



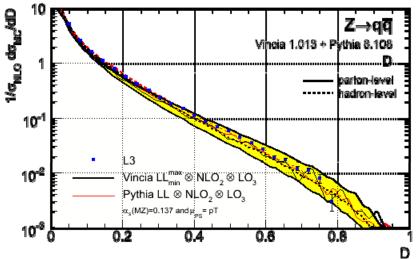
Can vary


evolution variable, kinematics maps, radiation functions, renormalization choice, matching strategy (here just varying splitting functions)

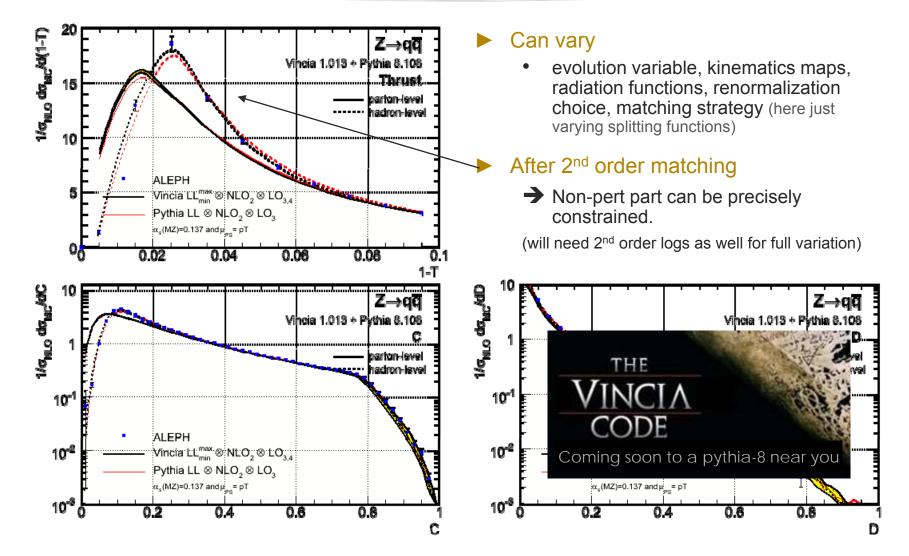
At Pure LL,

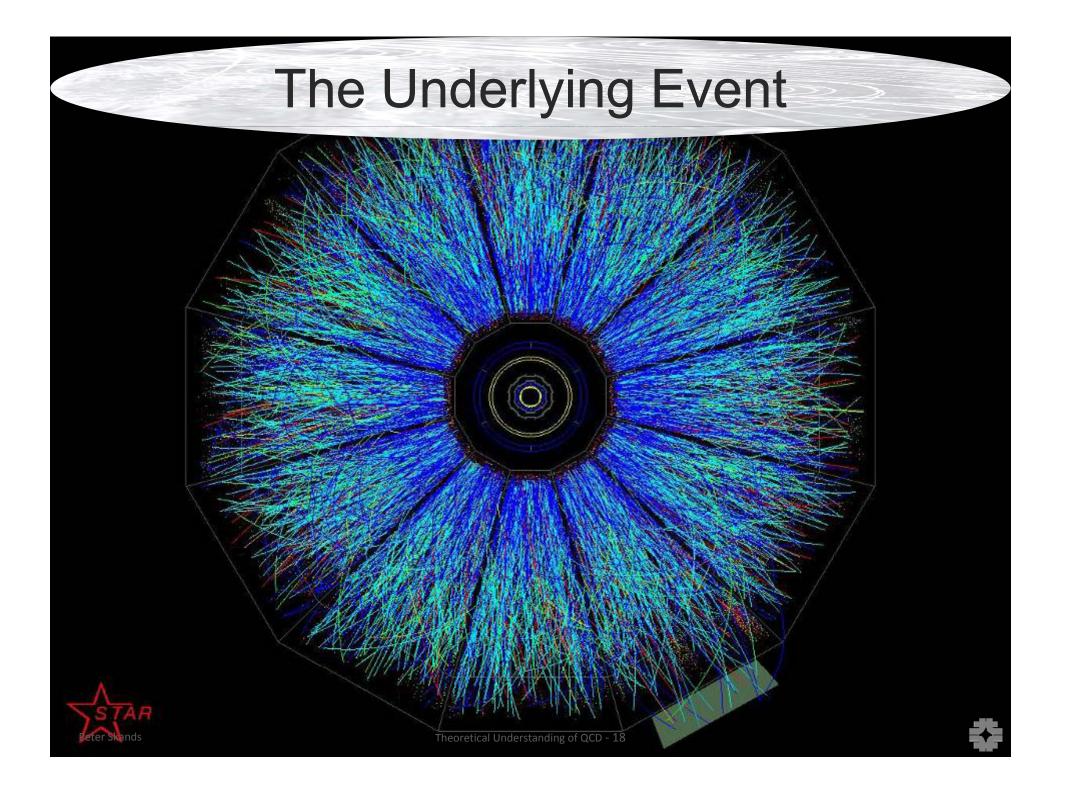
can definitely see a non-perturbative correction, but hard to precisely constrain it

VINCIA in Action RTUAL NUMERICAL COLLIDER WITH INTERLEAVED ANTENNAE



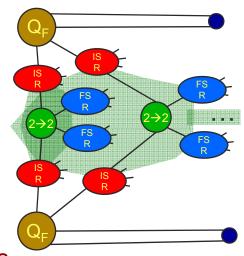
Can vary

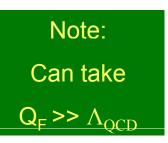

 evolution variable, kinematics maps, radiation functions, renormalization choice, matching strategy (here just varying splitting functions)


► At Pure LL,

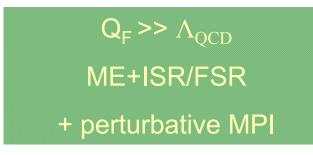
• can definitely see a non-perturbative correction, but hard to precisely constrain it

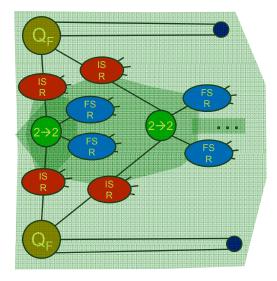
VINCIA in Action RTUAL NUMERICAL COLLIDER WITH INTERLEAVED ANTENNAE


Particle Production


Starting point: matrix element + parton shower

- hard parton-parton scattering
 - (normally $2 \rightarrow 2$ in MC)
- + bremsstrahlung associated with it
 - \rightarrow 2 \rightarrow n in (improved) LL approximation
- ► But hadrons are not elementary
- ► + QCD diverges at low p_T
- → multiple perturbative parton-parton collisions

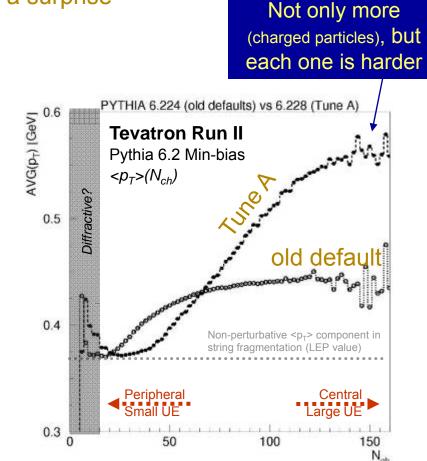

e.g. $4 \rightarrow 4$, $3 \rightarrow 3$, $3 \rightarrow 2$


- ► No factorization theorem
- →Herwig++, Pythia, Sherpa: MPI models

Additional Sources of Particle Production

Need-to-know issues for IR sensitive quantities (e.g., N_{ch})

Stuff at $Q_F \sim \Lambda_{OCD}$


+

- Hadronization
- Remnants from the incoming beams
- Additional (non-perturbative / collective) phenomena?
 - Bose-Einstein Correlations
 - Non-perturbative gluon exchanges / color reconnections ?
 - String-string interactions / collective multi-string effects ?
 - "Plasma" effects?
 - Interactions with "background" vacuum, remnants, or active medium?

Underlying Event and Color

Min-bias data at Tevatron showed a surprise

- Charged particle pT spectra were highly correlated with event multiplicity: not expected
- For his 'Tune A', Rick Field noted that a high correlation in color space between the different MPI partons could account for the behavior
- But needed ~ 100% correlation. So far not explained
- Virtually all 'tunes' now employ these more 'extreme' correlations
 - But existing models too crude to access detailed physics
- What is their origin? Why are they needed?

Successful models: string interactions (area law)

PS & D. Wicke : EPJC52(2007)133 ; J. Rathsman : PLB452(1999)364

Conclusions

- QCD Phenomenology is in a state of impressive activity
 - Increasing move from educated guesses to precision science
 - Better matrix element calculators+integrators (+ more user-friendly)
 - Improved parton showers and improved matching
 - Developments in underlying events / minimum bias, towards a theory?
 - Upgrades of hadronization and decays
 - I believe the aim is set: NNLO + NLO multileg + NLL shower MC's
 - To improve further, will need theoretical foundation for UE and hadronization

► Early LHC Physics: theory

- At 14 TeV, everything is interesting
- Even if not a dinner Chez Maxim, rediscovering the Standard Model is much more than bread and butter
- Real possibilities for real surprises
- It is both essential, and I hope possible, to ensure timely discussions on "non-classified" data, such as min-bias, dijets, Drell-Yan, etc → allow rapid improvements in QCD modeling (beyond simple retunes) after startup

Additional Slides

Peter Skands Theoretical Physics, Fermilab

(Bremsstrahlung Example: SUSY @ LHC)

► Naively, brems suppressed by $\alpha_s \sim 0.1$

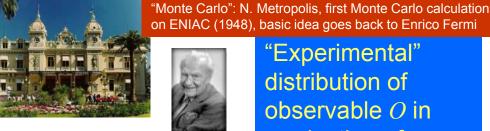
- Truncate at fixed order = LO, NLO, ...
- However, if ME >> 1 \rightarrow can't truncate!

$1 d^2\sigma$	$2\alpha_s$	$x_1^2 + x_2^2$
$\overline{\sigma} \ dx_1 dx_2$	3π	$(1-x_1)(1-x_2)$

► Example: SUSY pair production at 14 TeV, with MSUSY ~ 600 GeV

LHC - sps1a - m~600 Ge	V Plehn, Rainwater, PS PLB645(2007)217							
FIXED ORDER pQCD	$\sigma_{\rm tot}[{\rm pb}]$	$ ilde{g} ilde{g}$	$\tilde{u}_L \tilde{g}$	$\tilde{u}_L \tilde{u}_L^*$	$\tilde{u}_L \tilde{u}_L$	TT		
$p_{T,j} > 100 \text{ GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1.30		
inclusive X + 1 "jet"	$\rightarrow \sigma_{1j}$	2.89	2.74	0.136	0.145	0.73		
inclusive X + 2 "jets" -	$\rightarrow \sigma_{2j}$	1.09	0.85	0.049	0.039	0.26		Cross section for 1
$p_{T,j} > 50 { m GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1.30		more 50-GeV jets
	σ_{1j}	5.90	5.37	0.283	0.285	1.50		larger than total σ ,
	σ_{2j}	4.17	3.18	0.179	0.117	1.21	\backslash	obviously non-
(Computed with SUSY-MadGraph)								sensical

• Conclusion: 100 GeV can be "soft" at the LHC


- Matrix Element (fixed order) expansion breaks completely down at 50 GeV
- With decay jets of order 50 GeV, this is important to understand and control

Alwall, de Visscher, Maltoni: JHEP 0902(2009)017 or

Monte Carlo at Fixed Order

High-dimensional problem (phase space)

 $d \ge 5 \rightarrow$ Monte Carlo integration

on ENIAC (1948), basic idea goes back to Enrico Fermi "Experimental" distribution of

observable *O* in

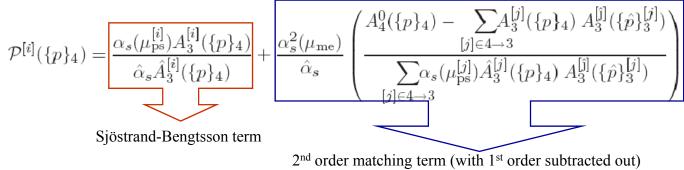
production of *X*:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}}\Big|_{\mathrm{ME}}$ **Fixed Order** $\mathrm{d}\Phi_{X+k}$ $\delta(\mathcal{O} - \mathcal{O}(\{p\}_{X+k}))$ (all orders) k : legs ℓ : loops {p} : momenta

Principal virtues

- 1. Stochastic error $O(\mathcal{N}^{1/2})$ independent of dimension
- 2. Full (perturbative) quantum treatment at each order
- 3. (KLN theorem: finite answer at each (complete) order)

Note 1: For *k* larger than a few, need to be quite clever in phase space sampling


Note 2: For $k + \ell > 0$, need to be careful in arranging for realvirtual cancellations

Z->4 Matching by multiplication

Starting point:

- LL shower w/ large coupling and large finite terms to generate "trial" branchings ("sufficiently" large to over-estimate the full ME).
- Accept branching [i] with a probability

Each point in 4-parton phase space then receives a contribution

$$\hat{\alpha}_s \alpha_s (\mu_{\rm ps}^{[qg]}) \hat{A}_3^{[qg]}(\{p\}_4) A_3^{[q\bar{q}]}(\{\hat{p}^{[qg]}\}_3) \mathcal{P}^{[qg]} + \hat{\alpha}_s \alpha_s (\mu_{\rm ps}^{[g\bar{q}]}) \hat{A}_3^{[g\bar{q}]}(\{p\}_4) A_3^{[q\bar{q}]}(\{\hat{p}^{[g\bar{q}]}\}_3) \mathcal{P}^{[g\bar{q}]}(\{p\}_4) A_3^{[q\bar{q}]}(\{p\}_4) A_3^{[q\bar{q$$

 $= \alpha_s^2(\mu_{\rm me})A_4^0(\{p\}_4)$

(If you think this looks deceptively easy, you are right)

Note: to maintain positivity for subleading colour, need to match across 4 events, 2 representing one color ordering, and 2 for the other ordering

The $Z \rightarrow 3$ 1-loop term

Second order matching term for 3 partons

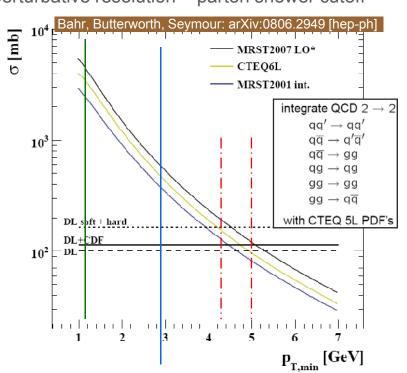
$$w_{3}^{(V)} = 2\operatorname{Re}\left[M_{3}^{(1)}M_{3}^{(0)*}\right] + |M_{3}^{(0)}|^{2}\left(\int_{0}^{s} \frac{\mathrm{d}\Phi_{3}}{\mathrm{d}\Phi_{2}} \left(A_{qg}S_{qg} + A_{g\bar{q}}S_{g\bar{q}}\right)\right) + \int_{0}^{Q_{had}^{2}} \frac{\mathrm{d}\Phi_{4}}{\mathrm{d}\Phi_{3}} w_{4}^{(R)} \\ - w_{2}^{(V)}A_{q\bar{q}}S_{q\bar{q}} + |M_{3}^{(0)}|^{2}\left(\delta_{\alpha} + \int_{Q_{E3}^{2}}^{s} \frac{\mathrm{d}\Phi_{3}'}{\mathrm{d}\Phi_{2}} \left(A_{q\bar{q}}S_{q\bar{q}} - (1 - Q_{E3}^{2}/Q_{E4}^{2})\left(A_{qg}S_{qg} + A_{g\bar{q}}S_{g\bar{q}}\right)\right)\right)$$

- ► Additive (S=1) → Ordinary NLO subtraction + shower leftovers
 - Shower off $w_2^{(V)}$
 - "Coherence" term: difference between 2- and 3-parton (power-suppressed) evolution above Q_{E3}. Explicit Q_E-dependence cancellation.
 - δ_{α} : Difference between alpha used in shower ($\mu = p_T$) and alpha used for matching \rightarrow Explicit scale choice cancellation
 - Integral over $w_4^{(R)}$ in IR region still contains NLL divergences \rightarrow regulate
 - Logs not resummed, so remaining (NLL) logs in $w_3^{(R)}$ also need to be regulated
- Multiplicative : $S = (1+...) \rightarrow$ Modified NLO subtraction + shower leftovers
 - A*S contains all logs from tree-level $\rightarrow w_4^{(R)}$ finite.
 - Any remaining logs in $w_3^{(V)}$ cancel against NNLO \rightarrow NLL resummation if put back in S

(Why Perturbative MPI?)

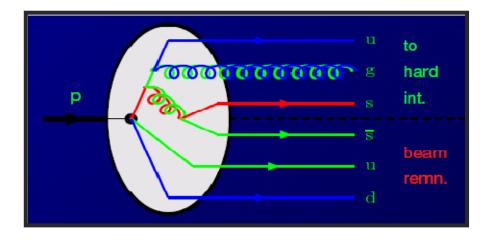
Analogue: Resummation of multiple bremsstrahlung emissions

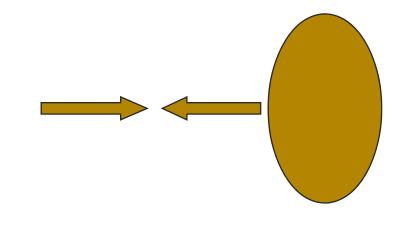
- Divergent σ for one emission (X + jet, fixed-order)
- Finite σ for divergent number of jets (X + jets, infinite-order)
 - N(jets) rendered finite by finite perturbative resolution = parton shower cutoff


(Resummation of) Multiple Perturbative Interactions

•Divergent σ for one interaction (fixed-order)

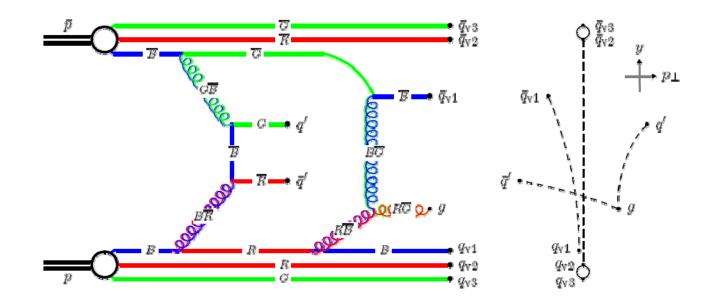
Finite σ for divergent number of interactions (infinite-order)


> N(jets) rendered finite by finite perturbative resolution


= color-screening cutoff (E_{cm}-dependent, but large uncert)

What's the problem?

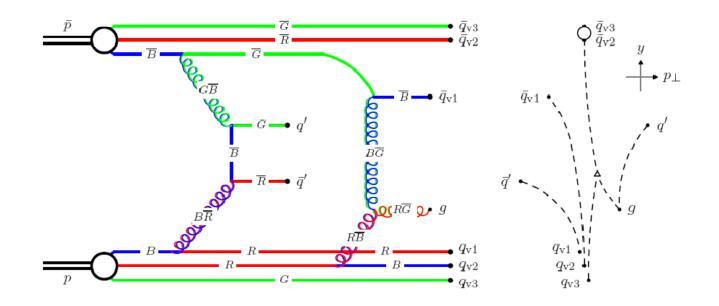
How are the initiators and remnant partons correllated?



- in impact parameter?
- in flavour?
- in x (longitudinal momentum)?
- in k_T (transverse momentum)?
- in colour (\rightarrow string topologies!)
- What does the beam remnant look like?
- (How) are the showers correlated / intertwined?

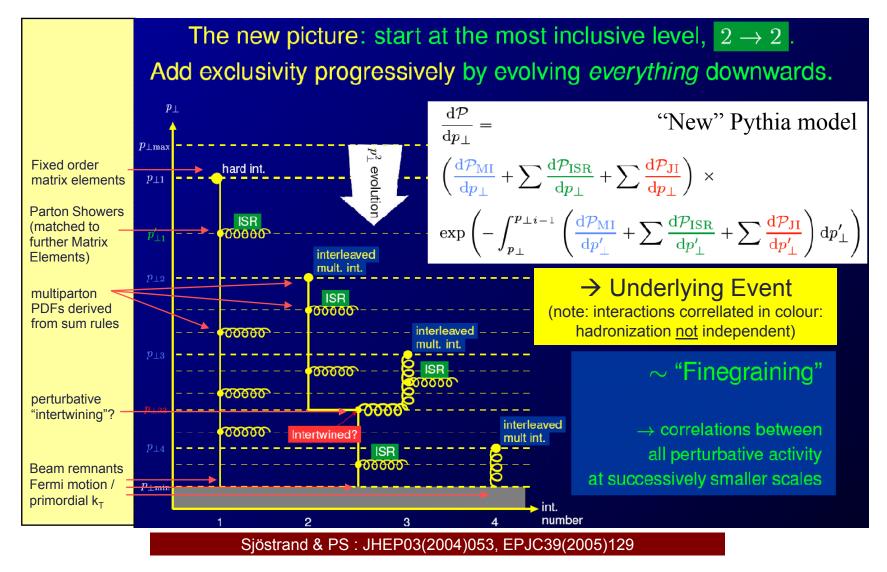
Underlying Event and Color

- The colour flow determines the hadronizing string topology
 - Each MPI, even when soft, is a color spark
 - Final distributions <u>crucially</u> depend on color space


Note: this just color **connections**, then there may be color **reconnections** too

Underlying Event and Color

The colour flow determines the hadronizing string topology


- Each MPI, even when soft, is a color spark
- Final distributions crucially depend on color space

Note: this just color **connections**, then there may be color **reconnections** too

The Interleaved Idea

