

SQUARING LOOPS

VALENTIN HIRSCHI IN COLLABORATION WITH O.MATTELAER

ERC MINIWORKSHOP JUNE 2ND, 2015

OUTLINE

• The challenges of computing loop-induced matrix-elements.

• How does MadEvent now integrate them.

• Validation and what we applied it to so far.

• Can you compute this loop-induced process with MG5_aMC?

- Can you compute this loop-induced process with MG5_aMC?
 - Well... no, but MadLoop can give you the loop ME's!

- Can you compute this loop-induced process with MG5_aMC?
 - Well... no, but MadLoop can give you the loop ME's!
- How does that help me?

- Can you compute this loop-induced process with MG5_aMC?
 - Well... no, but MadLoop can give you the loop ME's!

- How does that help me?
 - It... does not.

- Can you compute this loop-induced process with MG5_aMC?
 - Well... no, but MadLoop can give you the loop ME's!

- How does that help me?
 - It... does not.

There is a wide range of interest for loop-induced processes, but no general way of computing them.

Need to bring a definitive solution to this.

How NLO ME'S ARE COMPUTED?

 $\mathcal{A}_{U}^{(n,1)}|_{\text{non-}R_2}\mathcal{A}^{(n,0)\star} =$ $\sum_{\text{colour }h} \sum_{h} \left(\sum_{l} \lambda_{l}^{(1)} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h,l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i,l}} \right) \left(\sum_{i} \lambda_{b}^{(0)} \mathcal{B}_{h,b} \right)^{\star}$

How NLO ME'S ARE COMPUTED?

$$\mathcal{A}_{U}^{(n,1)}|_{\text{non-}R_{2}}\mathcal{A}^{(n,0)\star} = \sum_{\text{colour }h} \sum_{h} \left(\sum_{l} \lambda_{l}^{(1)} \int d^{d} \bar{\ell} \frac{\mathcal{N}_{h,l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i,l}} \right) \left(\sum_{b} \lambda_{b}^{(0)} \mathcal{B}_{h,b} \right)^{\star}$$

$$= \sum_{h} \sum_{l} \sum_{b} \operatorname{Red} \left[\int d^{d} \bar{\ell} \frac{\mathcal{N}_{h,l}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i,l}} \right] \Lambda_{lb} \mathcal{B}_{h,b}^{\star}$$

How NLO ME'S ARE COMPUTED?

$$\begin{aligned} \mathcal{A}_{U}^{(n,1)}|_{\text{non-}R_{2}}\mathcal{A}^{(n,0)\star} &= \\ &\sum_{\text{colour}}\sum_{h}\left(\sum_{l}\lambda_{l}^{(1)}\int d^{d}\bar{\ell}\frac{\mathcal{N}_{h,l}(\ell)}{\prod_{i=0}^{m_{l}-1}\bar{D}_{i,l}}\right)\left(\sum_{b}\lambda_{b}^{(0)}\mathcal{B}_{h,b}\right)^{\star} \\ &=\sum_{h}\sum_{l}\sum_{b}\text{Red}\left[\int d^{d}\bar{\ell}\frac{\mathcal{N}_{h,l}(\ell)}{\prod_{i=0}^{m_{l}-1}\bar{D}_{i,l}}\right]\Lambda_{lb}\mathcal{B}_{h,b}^{\star} \\ &=\sum_{t}\text{Red}\left[\int d^{d}\bar{\ell}\frac{\sum_{h}\sum_{l\in t}\sum_{b}\mathcal{N}_{h,l}(\ell)\Lambda_{lb}\mathcal{B}_{h,b}^{\star}}{\prod_{i=0}^{m_{t}-1}\bar{D}_{i,t}}\right]\end{aligned}$$

$$|\mathcal{A}^{LI}|^2 = |\mathcal{A}^{LI}_{\text{non-}R_2}|^2 + 2\Re \left(\mathcal{A}^{LI}_{\text{non-}R_2}\mathcal{A}^{LI*}_{R_2}\right) + |\mathcal{A}^{LI}_{R_2}|^2$$

$$\begin{aligned} \left|\mathcal{A}^{LI}\right|^{2} &= \left|\mathcal{A}^{LI}_{\text{non-}R_{2}}\right|^{2} + 2\Re\left(\mathcal{A}^{LI}_{\text{non-}R_{2}}\mathcal{A}^{LI*}_{R_{2}}\right) + \left|\mathcal{A}^{LI}_{R_{2}}\right|^{2} \\ \left|\mathcal{A}^{LI}_{\text{non-}R_{2}}\right|^{2} &= \sum_{\text{color}}\sum_{h=1,H} \left(\sum_{l_{1}=1,L}\lambda_{l_{1}}\int d^{d}\bar{\ell} \frac{\mathcal{N}_{h,l_{1}}(\ell)}{\prod_{i=0}^{m_{l_{1}}-1}\bar{D}_{i,l_{1}}}\right) \\ &\cdot \left(\sum_{l_{2}=1,L}\lambda_{l_{2}}\int d^{d}\bar{\ell} \frac{\mathcal{N}_{h,l_{2}}(\ell)}{\prod_{i=0}^{m_{l_{2}}-1}\bar{D}_{i,l_{2}}}\right)^{*} \end{aligned}$$

$$\begin{aligned} \left|\mathcal{A}^{LI}\right|^{2} &= \left|\mathcal{A}^{LI}_{\text{non-}R_{2}}\right|^{2} + 2\Re\left(\mathcal{A}^{LI}_{\text{non-}R_{2}}\mathcal{A}^{LI*}_{R_{2}}\right) + \left|\mathcal{A}^{LI}_{R_{2}}\right|^{2} \\ \left|\mathcal{A}^{LI}_{\text{non-}R_{2}}\right|^{2} &= \sum_{\text{color}}\sum_{h=1,H} \left(\sum_{l_{1}=1,L}\lambda_{l_{1}}\int d^{d}\bar{\ell}\frac{\mathcal{N}_{h,l_{1}}(\ell)}{\prod_{i=0}^{m_{l_{1}}-1}\bar{D}_{i,l_{1}}}\right) \\ &\cdot \left(\sum_{l_{2}=1,L}\lambda_{l_{2}}\int d^{d}\bar{\ell}\frac{\mathcal{N}_{h,l_{2}}(\ell)}{\prod_{i=0}^{m_{l_{2}}-1}\bar{D}_{i,l_{2}}}\right)^{\star} \end{aligned}$$
$$= \sum_{h=1,H}\sum_{l_{1}=1,L}\sum_{l_{2}=1,L} \left(\operatorname{Red}\left[\frac{\mathcal{N}_{h,l_{1}}(\ell)}{\prod_{i=0}^{m_{l_{1}}-1}\bar{D}_{i,l_{1}}}\right]\operatorname{Red}\left[\frac{\mathcal{N}_{h,l_{1}}(\ell)}{\prod_{i=0}^{m_{l_{2}}-1}\bar{D}_{i,l_{2}}}\right]^{*}\sum_{\substack{color\\\Lambda_{l_{1},l_{2}}}}\lambda_{l_{1}}\lambda_{l_{2}}^{*}}\right) \end{aligned}$$

$$= \sum_{h=1,H} \sum_{l_1=1,L} \sum_{l_2=1,L} \left(\operatorname{Red} \left[\frac{\mathcal{N}_{h,l_1}(\ell)}{\prod_{i=0}^{m_{l_1}-1} \bar{D}_{i,l_1}} \right] \operatorname{Red} \left[\frac{\mathcal{N}_{h,l_1}(\ell)}{\prod_{i=0}^{m_{l_2}-1} \bar{D}_{i,l_2}} \right]^* \underbrace{\sum_{\text{color}} \lambda_{l_1} \lambda_{l_2}^*}_{\Lambda_{l_1,l_2}} \right)$$

• A) The number of terms in this squaring is $L \cdot L'$ (It was $L \cdot B'$ for NLO MEs).

 B) Impossible to do reduction at the squared amplitude level in this case. The number of calls to Red[] scales like 'L·H' (It was 'T' for NLO MEs) • A) The number of terms in this squaring is $L \cdot L$ (It was for $L \cdot B$ for NLO MEs).

$$= \sum_{h=1,H} \sum_{l_1=1,L} \sum_{l_2=1,L} \left(\operatorname{Red} \left[\frac{\mathcal{N}_{h,l_1}(\ell)}{\prod_{i=0}^{m_{l_1}-1} \bar{D}_{i,l_1}} \right] \operatorname{Red} \left[\frac{\mathcal{N}_{h,l_1}(\ell)}{\prod_{i=0}^{m_{l_2}-1} \bar{D}_{i,l_2}} \right]^* \underbrace{\sum_{\text{color}} \lambda_{l_1} \lambda_{l_2}^*}_{\Lambda_{l_1,l_2}} \right)$$

• A) The number of terms in this squaring is $L \cdot L$ (It was for $L \cdot B$ for NLO MEs).

$$= \sum_{h=1,H} \sum_{l_1=1,L} \sum_{l_2=1,L} \left(\operatorname{Red} \left[\frac{\mathcal{N}_{h,l_1}(\ell)}{\prod_{i=0}^{m_{l_1}-1} \bar{D}_{i,l_1}} \right] \operatorname{Red} \left[\frac{\mathcal{N}_{h,l_1}(\ell)}{\prod_{i=0}^{m_{l_2}-1} \bar{D}_{i,l_2}} \right]^* \underbrace{\sum_{\text{color}} \lambda_{l_1} \lambda_{l_2}^*}_{\Lambda_{l_1,l_2}} \right)$$

Solution : Project onto color flows (i.e. use partial color amplitudes)

$$\lambda_{l} = \sum_{i=1,K} \underbrace{(\lambda_{l} \otimes \kappa_{i})}_{\alpha_{l,i}} \kappa_{i}. \qquad \sum_{\text{color}} \kappa_{i} \kappa_{j}^{*} = K_{ij}$$
$$\left| \mathcal{A}_{\text{non-}R_{2}}^{LI} \right|^{2} = \sum_{h=1,H} \sum_{i=1,K} \sum_{j=1,K} \left(J_{i,h} J_{j,h}^{*} K_{i,j} \right)$$
$$J_{j,h} := \sum_{l=1,L} \alpha_{i,l} \tilde{L}_{l,h}$$
$$\tilde{L}_{l,h} := \text{Red} \left[\frac{\mathcal{N}_{l,h}(\ell)}{\prod_{i=0}^{m_{l}-1} \bar{D}_{i,l}} \right]$$

PERKS OF COLOR FLOWS

- Necessary for event color assignation for loop-induced processes with MadEvent.
- Allessandro Brogio (@PSI) could use this at NLO to build SCET NLO hard functions (for t t h)
- For the matrix-element improved shower program VINCIA.
- In a matched computation when using a fixed-color ME generator such as COMIX for both reals AND subtraction terms.
- MadLoop keeps track of the 'split orders' in the partial color amplitudes, so that mixed expansions or interference computations are possible.
- The implementation of MadLoop CFA computation is now complete and tested. If there is interest for this, the next step is to provide and optimized computation of target color Flows/Configurations.
- In general, it increases MadLoop flexibility, and also,

Prospects for pushing the Colourful FKS idea further !

• B) Impossible to do reduction at the squared amplitude level in this case. The number of calls to Red[] scales like 'L·H' (It was 'T' for NLO MEs)

$$\tilde{L}_{l,h} := \operatorname{Red}\left[\frac{\mathcal{N}_{l,h}(\ell)}{\prod_{i=0}^{m_l-1} \bar{D}_{i,l}}\right]$$

Solution B1 : Perform MC over helicity config (and stick to OPP).

• B) Impossible to do reduction at the squared amplitude level in this case. The number of calls to Red[] scales like 'L·H' (It was 'T' for NLO MEs)

$$\tilde{L}_{l,h} := \operatorname{Red}\left[\frac{\mathcal{N}_{l,h}(\ell)}{\prod_{i=0}^{m_l-1} \bar{D}_{i,l}}\right]$$

Solution B1 : Perform MC over helicity config (and stick to OPP).

Solution B2 : Use the so-called 'open-loop' decomposition and reduce with TIR.

$$\left\{ T^{(r),\mu_{1}\cdots\mu_{r}} \equiv \int d^{d}\bar{\ell} \frac{\ell^{\mu_{1}}\dots\ell^{\mu_{r}}}{\prod_{i=0}^{m_{l_{t}}-1}\bar{D}_{i,l_{t}}}, \ C^{(r)}_{\mu_{1}\dots\mu_{r};h,l} \right\}_{r=0}^{r_{\max}}$$

The tensor coefficients must be computed once only and can then be recycled for all helicity configuration

• B) Impossible to do reduction at the squared amplitude level in this case. The number of calls to Red[] scales like 'L·H' (It was 'T' for NLO MEs)

$$\tilde{L}_{l,h} := \operatorname{Red}\left[\frac{\mathcal{N}_{l,h}(\ell)}{\prod_{i=0}^{m_l-1} \bar{D}_{i,l}}\right]$$

Solution B1 : Perform MC over helicity config (and stick to OPP).

Solution B2 : Use the so-called 'open-loop' decomposition and reduce with TIR.

$$\left\{ T^{(r),\mu_{1}\cdots\mu_{r}} \equiv \int d^{d}\bar{\ell} \frac{\ell^{\mu_{1}}\dots\ell^{\mu_{r}}}{\prod_{i=0}^{m_{l_{t}}-1}\bar{D}_{i,l_{t}}}, \ C^{(r)}_{\mu_{1}\dots\mu_{r};h,l} \right\}_{r=0}^{r_{\max}}$$

The tensor coefficients must be computed once only and can then be recycled for all helicity configuration

- Which one is best? It depends on:
 - A) How faster OPP is w.r.t. TIR.
 - B) How good is the Monte-Carlo sampling over helicity configurations

	$\left gg ightarrow hh ight.$	gg ightarrow hhg	gg ightarrow hhgg	gg ightarrow hggg
#loop Feynman diagrams	16	108	952	2040
# topologies	8	54	380	540
# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7s	21s	269s	1h36m
Output code size	$0.5 { m Mb}$	$0.7 { m Mb}$	$1.8 { m Mb}$	$3.2 { m ~Mb}$
Runtime RAM usage	4.7 Mb	$20.5 { m ~Mb}$	$102 {\rm ~Mb}$	$240~{\rm Mb}$
Run time (OPP, single hel.)	2.6ms (81%)	40.7ms (84%)	859ms (83%)	1.27s (85%)
Run time (IREGI, single hel.)	17.5ms (97%)	1.14s (99%)	65s~(100%)	70s~(100%)
Run time (PJFry, single hel.)	3.2 ms (85%)	190 ms (96%)	29s (100%)	30s~(100%)
Run time (Golem95, single hel.)	15.1ms (97%)	615ms~(99%)	18s (99%)	19s~(99%)
Run time (OPP, hel. summed)	5.2ms (82%)	328ms (85%)	14.7s (81%)	41s (86%)
Run time (IREGI, hel. summed)	18.4ms (95%)	1.19s~(96%)	68.2s~(96%)	75.6s~(92%)
Run time (PJFry, hel. summed)	3.8 ms (75%)	243ms (79%)	30.5s~(91%)	33.7s~(83%)

	$\left gg ightarrow hh ight.$	gg ightarrow hhg	gg ightarrow hhgg	gg ightarrow hggg
#loop Feynman diagrams	16	108	952	2040
# topologies	8	54	380	540
# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7s	21s	269s	1h36m
Output code size	$0.5 { m Mb}$	$0.7 { m Mb}$	$1.8 { m Mb}$	$3.2 { m ~Mb}$
Runtime RAM usage	4.7 Mb	$20.5 { m ~Mb}$	$102 {\rm ~Mb}$	$240~{\rm Mb}$
Run time (OPP, single hel.)	2.6ms (81%)	40.7ms (84%)	859ms (83%)	1.27s (85%)
Run time (IREGI, single hel.)	17.5ms (97%)	1.14s (99%)	65s~(100%)	70s (100%)
Run time (PJFry, single hel.)	3.2 ms (85%)	190 ms (96%)	29s~(100%)	30s~(100%)
Run time (Golem95, single hel.)	15.1ms (97%)	615ms~(99%)	18s (99%)	19s~(99%)
Run time (OPP, hel. summed)	5.2ms (82%)	328ms (85%)	14.7s (81%)	41s (86%)
Run time (IREGI, hel. summed)	18.4ms (95%)	1.19s~(96%)	68.2s~(96%)	75.6s (92%)
Run time (PJFry, hel. summed)	3.8 ms (75%)	243ms (79%)	30.5s~(91%)	33.7s~(83%)

	$\left gg ightarrow hh ight.$	gg ightarrow hhg	gg ightarrow hhgg	gg ightarrow hggg
#loop Feynman diagrams	16	108	952	2040
# topologies	8	54	380	540
# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7s	21s	269s	1h36m
Output code size	$0.5 { m Mb}$	$0.7 { m Mb}$	$1.8 { m Mb}$	$3.2 { m ~Mb}$
Runtime RAM usage	4.7 Mb	$20.5 {\rm ~Mb}$	$102 {\rm ~Mb}$	$240~{\rm Mb}$
Run time (OPP, single hel.)	2.6ms (81%)	40.7ms (84%)	859ms (83%)	1.27s (85%)
Run time (IREGI, single hel.)	17.5ms (97%)	1.14s (99%)	65s (100%)	70s (100%)
Run time (PJFry, single hel.)	3.2 ms (85%)	190ms (96%)	29s (100%)	30s (100%)
Run time (Golem95, single hel.)	15.1ms (97%)	615ms~(99%)	18s (99%)	19s~(99%)
Run time (OPP, hel. summed)	5.2ms (82%)	328ms (85%)	14.7s (81%)	41s (86%)
Run time (IREGI, hel. summed)	18.4ms (95%)	1.19s~(96%)	68.2s (96%)	75.6s~(92%)
Run time (PJFry, hel. summed)	3.8 ms (75%)	243ms (79%)	30.5s~(91%)	33.7s (83%)

	$gg ightarrow hh$	gg ightarrow hhg	gg ightarrow hhgg	gg ightarrow hggg
#loop Feynman diagrams	16	108	952	2040
# topologies	8	54	380	540
# indep. non-zero hel. configs.	2	8	16	32
Generation time	8.7s	21s	269s	1h36m
Output code size	$0.5 { m Mb}$	$0.7 { m ~Mb}$	$1.8 { m Mb}$	$3.2 { m ~Mb}$
Runtime RAM usage	4.7 Mb	$20.5 { m ~Mb}$	$102 {\rm ~Mb}$	$240~{\rm Mb}$
Run time (OPP, single hel.)	2.6ms (81%)	40.7ms (84%)	859ms (83%)	1.27s (85%)
Run time (IREGI, single hel.)	17.5ms (97%)	1.14s (99%)	65s (100%)	70s (100%)
Run time (PJFry, single hel.)	3.2 ms (85%)	190ms (96%)	29s (100%)	30s (100%)
Run time (Golem95, single hel.)	15.1ms (97%)	615ms~(99%)	18s (99%)	19s~(99%)
Run time (OPP, hel. summed)	5.2ms (82%)	328ms (85%)	14.7s (81%)	41s (86%)
Run time (IREGI, hel. summed)	18.4ms (95%)	1.19s~(96%)	68.2s~(96%)	75.6s~(92%)
Run time (PJFry, hel. summed)	3.8 ms (75%)	243ms (79%)	30.5s~(91%)	33.7s (83%)

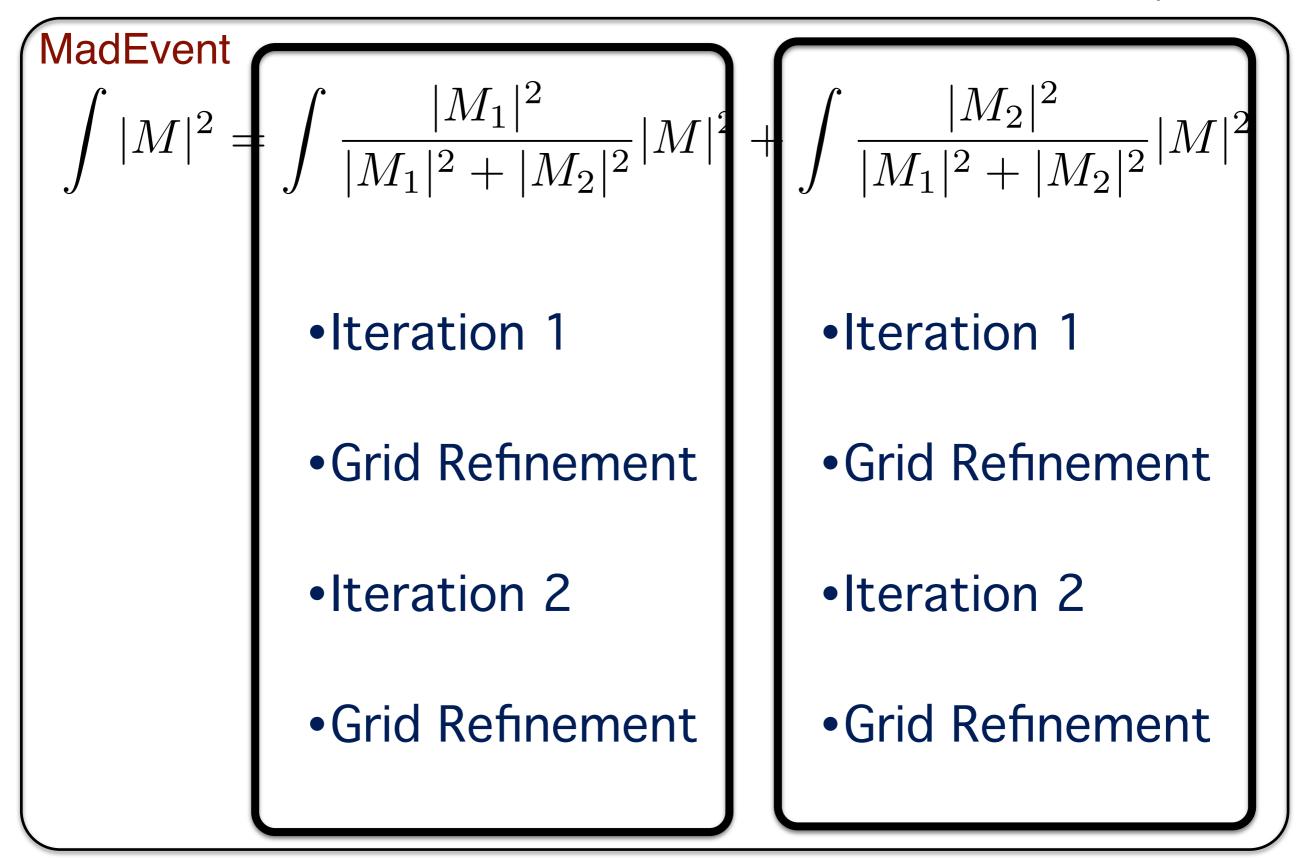
• OPP with efficient MC over helicity configurations is clearly the dominant approach.

[Words of caution: TIR could in principle be optimized further by recycling the result for loops sharing topologies or even across topologies]

Squaring loops

ERC MiniWorkshop

Slide by O.Mattelaer.

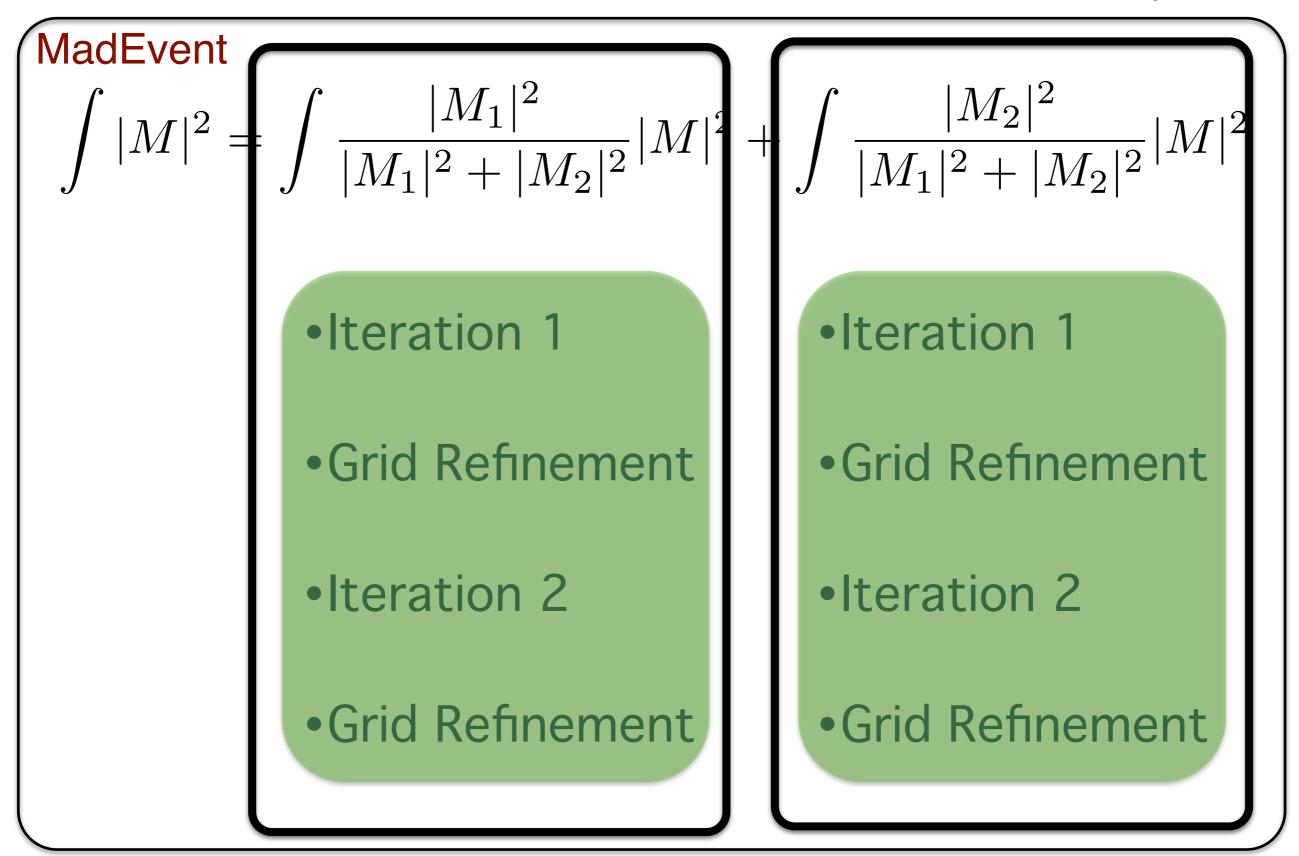

MadEvent $|M|^{2} = \frac{|M_{1}|^{2}}{|M_{1}|^{2} + |M_{2}|^{2}} |M|^{2} + \frac{|M_{2}|^{2}}{|M_{1}|^{2} + |M_{2}|^{2}} |M|^{2}$

Slide by O.Mattelaer.

MadEvent

$$\int |M|^2 = \int \frac{|M_1|^2}{|M_1|^2 + |M_2|^2} |M|^2 + \int \frac{|M_2|^2}{|M_1|^2 + |M_2|^2} |M|^2$$

Slide by O.Mattelaer.

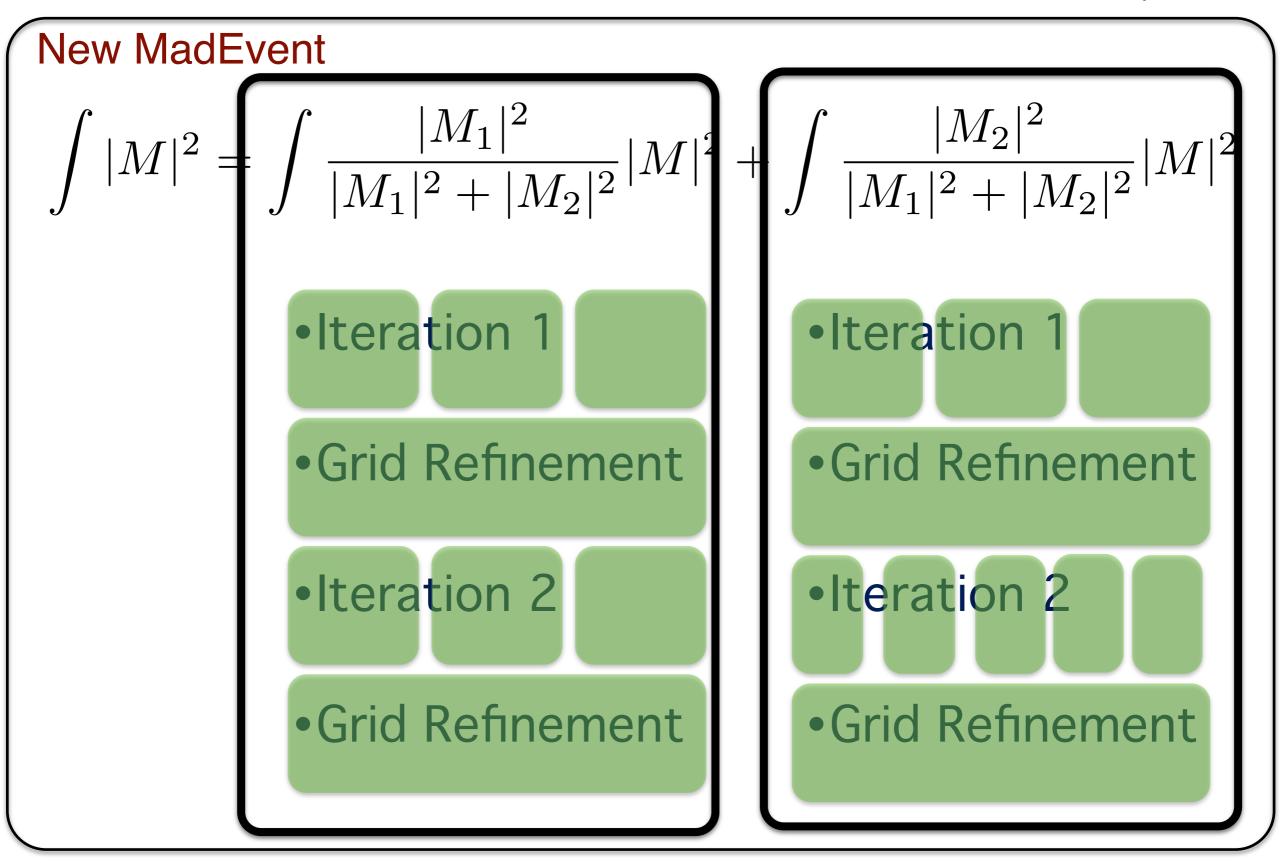

Valentin Hirschi, SLAC

Squaring loops

ERC MiniWorkshop

02.06.2015

Slide by O.Mattelaer.



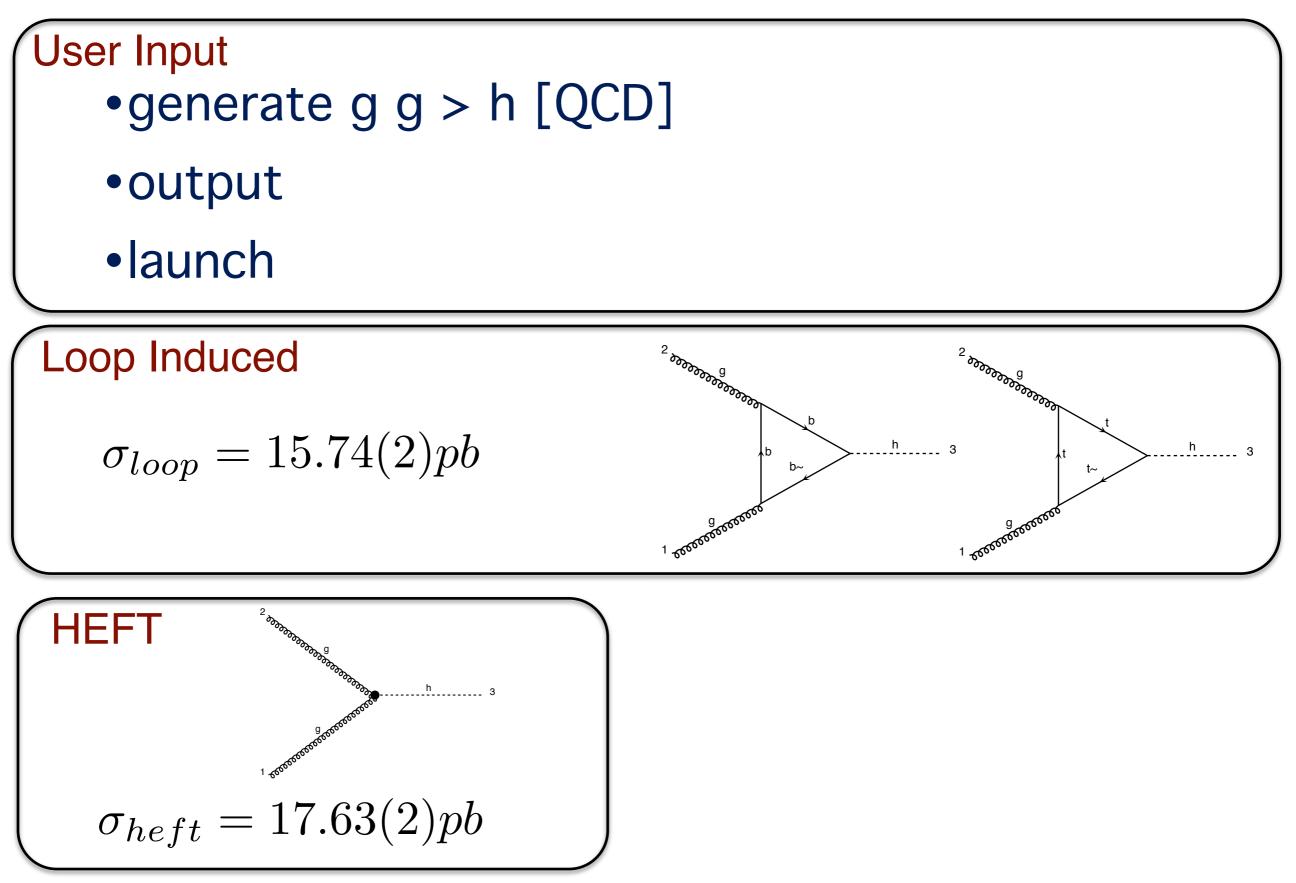
Valentin Hirschi, SLAC

Squaring loops

ERC MiniWorkshop

Slide by O.Mattelaer.

Valentin Hirschi, SLAC

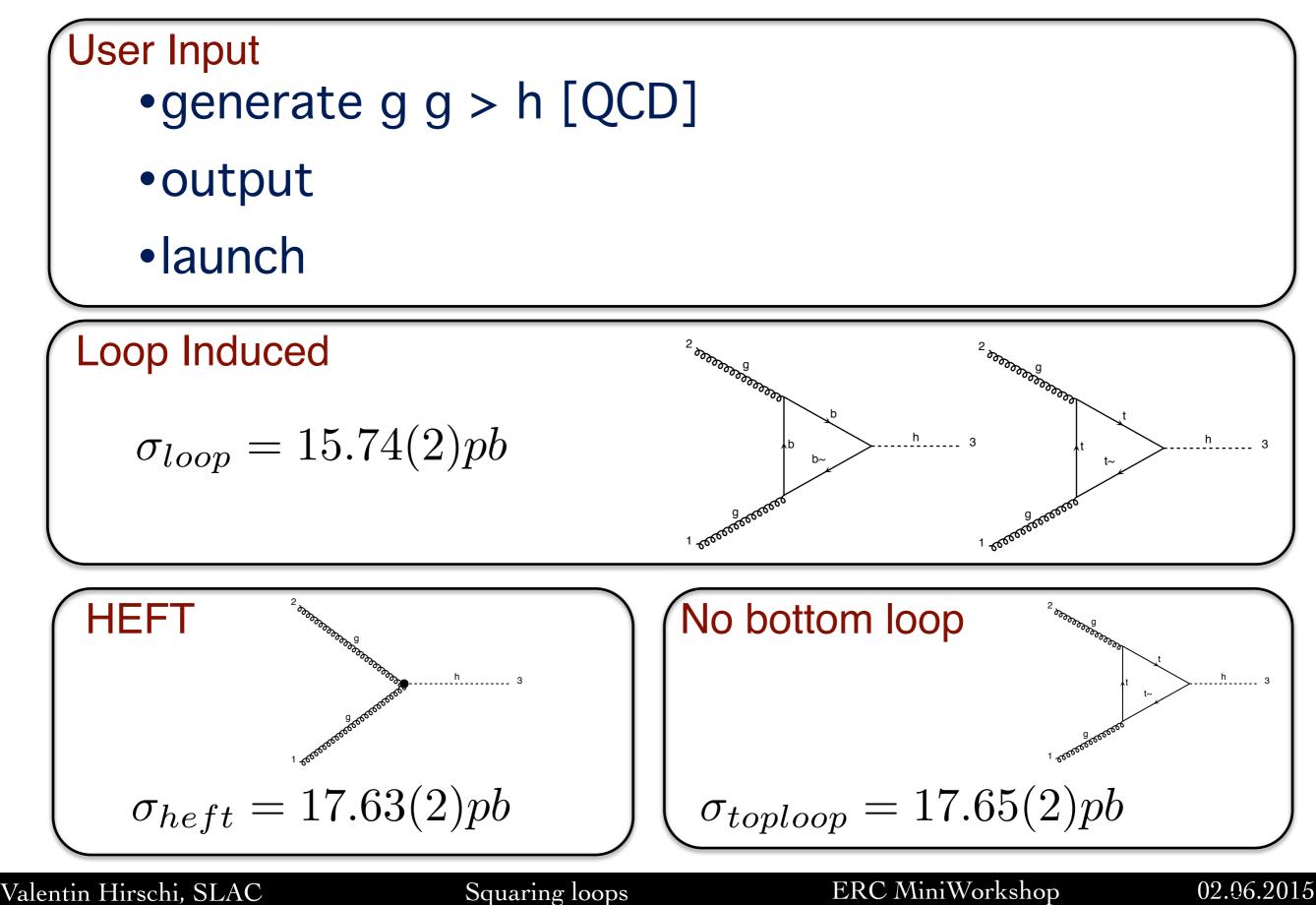

Squaring loops

ERC MiniWorkshop

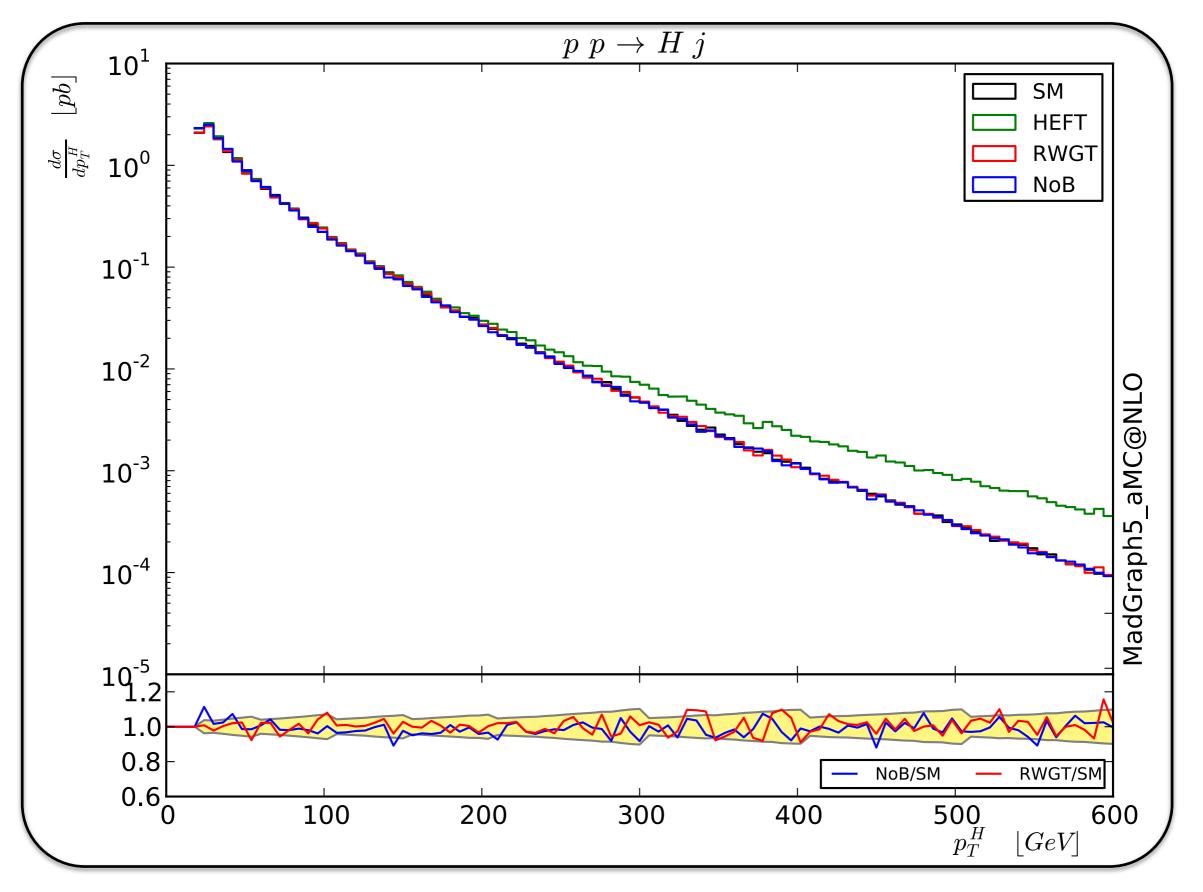
02.06.2015

SIMPLEST EXAMPLE

Slide by O.Mattelaer.


Valentin Hirschi, SLAC

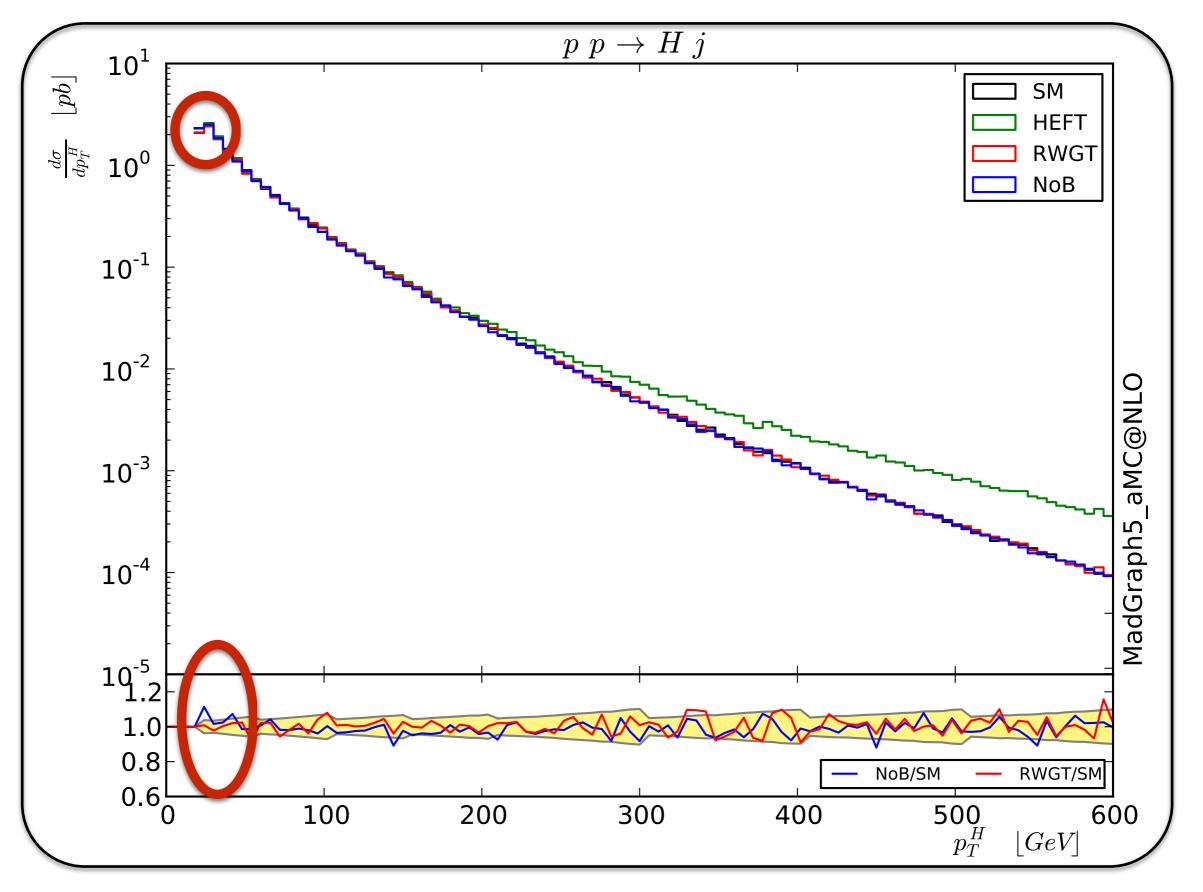
Squaring loops


ERC MiniWorkshop

SIMPLEST EXAMPLE

Slide by O.Mattelaer.

VALIDATION P P > H J

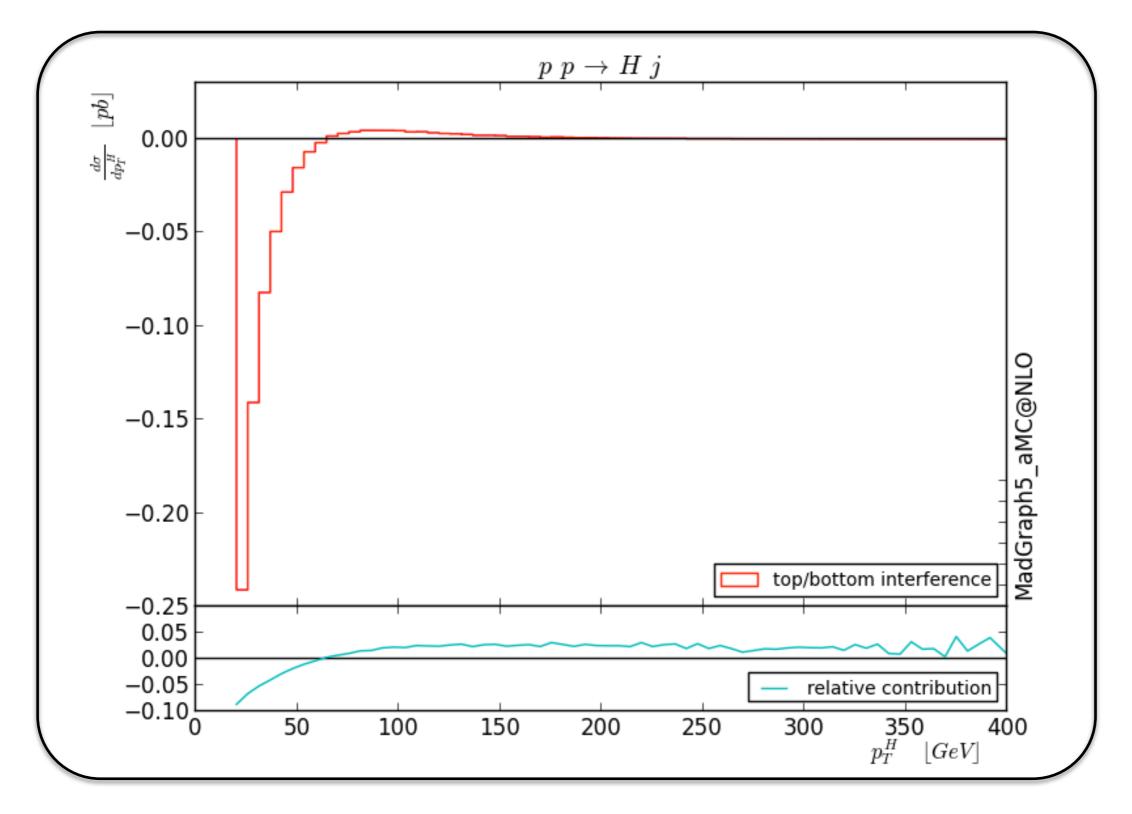

Valentin Hirschi, SLAC

Squaring loops

ERC MiniWorkshop

02.06.2015

VALIDATION P P > H J

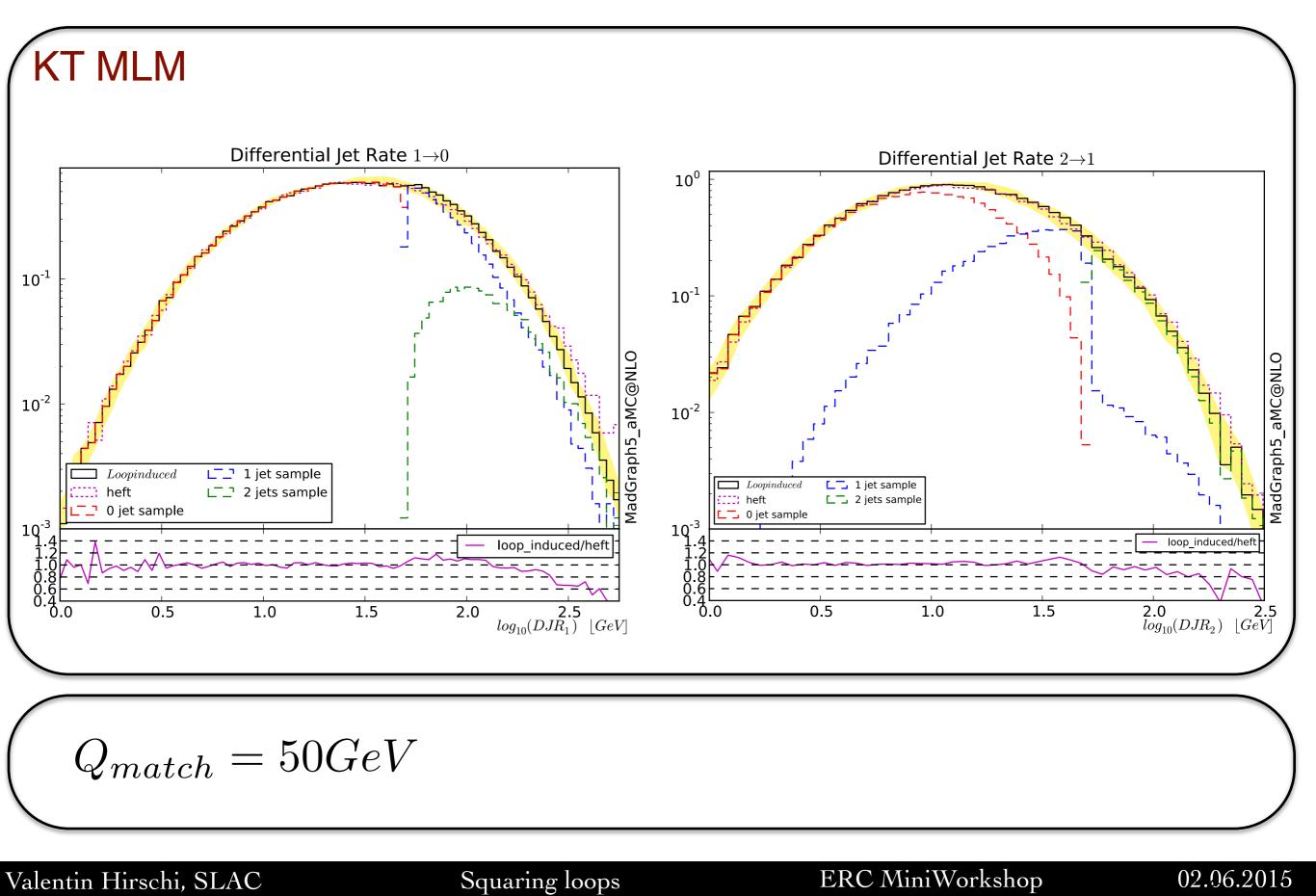

Valentin Hirschi, SLAC

Squaring loops

ERC MiniWorkshop

02.06.2015

VALIDATION P P > H J


Important b-mass effects at low-pt but the expected naive rescaling at high-pt

Valentin Hirschi, SLAC

Squaring loops

ERC MiniWorkshop

MATCHING / MERGING

BSM: Z+A/H

Exact Phase-Space integration

	$gg \to Zh^0$	$gg \rightarrow ZH^0$	$gg \rightarrow ZA^0$
B1	$113.6 \begin{array}{c} +28.9\% \\ -21.2\% \end{array} \begin{array}{c} +1.0\% \\ -1.2\% \end{array}$	$682.4 \begin{array}{c} +29.6\% \\ -21.5\% \end{array} \begin{array}{c} +1.2\% \\ -1.2\% \end{array}$	$0.6203 \begin{array}{c} +32.5\% \\ -23.0\% \end{array} \begin{array}{c} +1.9\% \\ -1.9\% \end{array}$
B2	$85.59 \begin{array}{c} +29.9\% \\ -21.4\% \end{array} \begin{array}{c} +1.4\% \\ -1.1\% \end{array}$	$1545 \begin{array}{c} +30.1\% \\ -21.8\% \end{array} \begin{array}{c} +1.3\% \\ -1.3\% \end{array}$	$0.8614 \begin{array}{c} +33.0\% \\ -23.3\% \end{array} \begin{array}{c} +2.0\% \\ -2.0\% \end{array}$
B3	$169.9 \begin{array}{c} +28.1\% \\ -19.9\% \end{array} \begin{array}{c} +1.4\% \\ -0.5\% \end{array}$	$0.8968 \begin{array}{c} +31.2\% \\ -22.3\% \end{array} \begin{array}{c} +1.5\% \\ -1.6\% \end{array}$	$1317 \ {}^{+28.4\%}_{-20.8\%} \ {}^{+1.0\%}_{-1.0\%}$

Reweighting (1503.01656)

	$gg \to Zh^0$	$gg \to ZH^0$	$gg \rightarrow ZA^0$
B1	$113 \ ^{+30\%}_{-21\%}$	$686 \ ^{+30\%}_{-22\%}$	$0.622 {}^{+32\%}_{-23\%}$
B2	$85.8 \ ^{+30.1\%}_{-21\%}$	$1544\ ^{+30\%}_{-22\%}$	$0.869 {}^{+34\%}_{-23\%}$
B3	$167 \ ^{+31\%}_{-19\%}$	$0.891 {}^{+33\%}_{-21\%}$	$1325 \ ^{+28\%}_{-21\%}$

BSM: Z+A/H

Exact Phase-Space integration

	g_{i}	$q \rightarrow Z h^0$		$gg \rightarrow ZH^0$	$gg \rightarrow ZA^0$
B1	113.6	$^{+28.9\%}_{-21.2\%}$ +	$1.0\% \\ 1.2\%$	$682.4 \begin{array}{c} +29.6\% \\ -21.5\% \end{array} \begin{array}{c} +1.2\% \\ -1.2\% \end{array}$	$0.6203 \begin{array}{c} +32.5\% \\ -23.0\% \end{array} \begin{array}{c} +1.9\% \\ -1.9\% \end{array}$
B2	85.59	+29.9% + 21.4% - 21.4%	$1.4\% \\ 1.1\%$	$1545 \begin{array}{c} +30.1\% \\ -21.8\% \end{array} \begin{array}{c} +1.3\% \\ -1.3\% \end{array}$	$0.8614 \begin{array}{c} +33.0\% \\ -23.3\% \end{array} \begin{array}{c} +2.0\% \\ -2.0\% \end{array}$
B3	169.9	+28.1% $+10.13%$ $+10.13%$ $-10.13%$ $-10.13%$ $-10.13%$	$1.4\% \\ 0.5\%$	$0.8968 \begin{array}{c} +31.2\% \\ -22.3\% \end{array} \begin{array}{c} +1.5\% \\ -1.6\% \end{array}$	$1317 \begin{array}{c} +28.4\% \\ -20.8\% \end{array} \begin{array}{c} +1.0\% \\ -1.0\% \end{array}$

Reweighting (1503.01656)

	$gg \to Zh^0$	$gg \to ZH^0$	$gg \rightarrow ZA^0$
B1	$113 \ ^{+30\%}_{-21\%}$	$686 \ ^{+30\%}_{-22\%}$	$0.622 {}^{+32\%}_{-23\%}$
B2	$85.8 \ ^{+30.1\%}_{-21\%}$	$1544\ ^{+30\%}_{-22\%}$	$0.869 {}^{+34\%}_{-23\%}$
B3	$167 \ ^{+31\%}_{-19\%}$	$0.891 {}^{+33\%}_{-21\%}$	$1325 {}^{+28\%}_{-21\%}$

BSM: Z+A/H

Exact Phase-Space integration

	$g_{!}$	$q \rightarrow Z h^0$)	$gg \rightarrow ZH^0$	$gg \to ZA^0$
B1	113.6	$^{+28.9\%}_{-21.2\%}$ +	-1.0% -1.2%	$682.4 \begin{array}{c} +29.6\% \\ -21.5\% \end{array} \begin{array}{c} +1.2\% \\ -1.2\% \end{array}$	$0.6203 \begin{array}{c} +32.5\% \\ -23.0\% \end{array} \begin{array}{c} +1.9\% \\ -1.9\% \end{array}$
B2	85.59	$^{+29.9\%}_{-21.4\%}$ +	-1.4% -1.1%	$1545 \begin{array}{c} +30.1\% \\ -21.8\% \end{array} \begin{array}{c} +1.3\% \\ -1.3\% \end{array}$	$0.8614 \begin{array}{c} +33.0\% \\ -23.3\% \end{array} \begin{array}{c} +2.0\% \\ -2.0\% \end{array}$
B3	169.9	$^{+28.1\%}_{-19.9\%}$ +	-1.4% -0.5%	$0.8968 \begin{array}{c} +31.2\% \\ -22.3\% \end{array} \begin{array}{c} +1.5\% \\ -1.6\% \end{array}$	$1317 \begin{array}{c} +28.4\% \\ -20.8\% \end{array} \begin{array}{c} +1.0\% \\ -1.0\% \end{array}$

Reweighting (1503.01656)

	$gg \to Zh^0$	$gg \to ZH^0$	$gg \to ZA^0$
B1	$113 \ ^{+30\%}_{-21\%}$	$686 \ ^{+30\%}_{-22\%}$	$0.622 {}^{+32\%}_{-23\%}$
B2	$85.8 \ ^{+30.1\%}_{-21\%}$	$1544\ ^{+30\%}_{-22\%}$	$0.869 {}^{+34\%}_{-23\%}$
B3	$167 \ ^{+31\%}_{-19\%}$	$0.891 {+33\%}_{-21\%}$	$1325 \ ^{+28\%}_{-21\%}$

[Finally, also independent cross-check against p p > (h>) z z with MadLoop+Sherpa]

Valentin Hirschi, SLAC

ERC MiniWorkshop

SM TABLES (I)

Process Single boson $+$ jets	Syntax	Cross section (pb) 13 TeV	$\Delta_{\hat{\mu}} \Delta_{PDF}$
a.1 $pp \rightarrow H$	p p > h [QCD]	17.79 ± 0.060	+31.3% +0.7%
a.2 $pp \rightarrow Hj$	p p > h j [QCD]	12.86 ± 0.030	$\substack{-23.1\% \ -1.0\% \\ +42.3\% \ +0.6\% \\ -27.7\% \ -0.9\% \\ +61.8\% \ +0.9\% }$
a.3 $pp \rightarrow Hjj$	pp>hjjQED=1 [QCD]	6.175 ± 0.020	$^{+61.8\%}_{-35.6\%}$ $^{+0.9\%}_{-0.9\%}$
a.4 $gg \rightarrow Zg$	g g > z g [QCD]	43.05 ± 0.060	$^{+43.7\%}_{-28.4\%}$ $^{+0.7\%}_{-1.0\%}$
a.5 $gg \rightarrow Zgg$	gg>zgg[QCD]	20.85 ± 0.030	$^{+64.5\%}_{-36.5\%}$ $^{+1.2\%}_{-1.2\%}$
a.6 $gg \rightarrow \gamma g$	gg>ag[QCD]	75.61 ± 0.200	$+73.8\% +0.8\% \\ -41.6\% -1.1\%$
a.7 $gg \rightarrow \gamma gg$	gg>agg[QCD]	14.50 ± 0.030	+76.2% +0.8% -40.7% -1.1%

SM TABLES (I)

Process Single boson $+$ jets	Syntax	Cross section (pb) 13 7	$\Delta_{\hat{\mu}} \Delta_{PDF}$ TeV
a.1 $pp \rightarrow H$	pp>h [QCD]	17.79 ± 0.060	+31.3% +0.7%
a.2 $pp \rightarrow Hj$	p p > h j [QCD]	12.86 ± 0.030	$^{-23.1\%}_{+42.3\%}$ $^{-1.0\%}_{+0.6\%}$
a.3 $pp \rightarrow Hjj$	pp>hjjQED=1 [QCD		$-27.7\% \\ +61.8\% \\ -35.6\% \\ -0.9\% \\$
a.4 $gg \rightarrow Zg$	gg>zg[QCD]	43.05 ± 0.060	$^{+43.7\%}_{-28.4\%}$ $^{+0.7\%}_{-1.0\%}$
a.5 $gg \rightarrow Zgg$	gg>zgg[QCD]	20.85 ± 0.030	$+64.5\% +1.2\% \\ -36.5\% -1.2\%$
a.6 $gg \rightarrow \gamma g$	gg>ag[QCD]	75.61 ± 0.200	$^{+73.8\%}_{-41.6\%} {}^{+0.8\%}_{-1.1\%}_{+76.2\%} {}^{+0.8\%}_{+0.8\%}$
a.7 $gg \rightarrow \gamma gg$	gg>agg[QCD]	14.50 ± 0.030	+76.2% +0.8% -40.7% -1.1%
Process Double bosons + jet	Syntax	Cross section (pb) 13 TeV	$\Delta_{\hat{\mu}} \Delta_{PDF}$
${\rm b.1} \qquad pp \mathop{\rightarrow} HH$	pp>hh[QCD]	$1.641 \pm 0.002 \cdot 10^{-2}$	$+30.2\% \\ -21.7\% \\ +45.7\% \\ +1.4\% \\$
b.2 $pp \rightarrow HHj$	pp>hhj [QCD]	$1.758 \pm 0.003 \cdot 10^{-2}$	$^{+45.7\%}_{-29.2\%}$ $^{-1.4\%}_{-1.4\%}_{+38.6\%}$ $^{+0.5\%}_{+0.5\%}$
b.3 $pp \rightarrow H\gamma j$	pp>haj [QCD]	$4.225 \pm 0.006 \cdot 10^{-3}$	$^{+38.6\%}_{-25.9\%}$ $^{+0.5\%}_{-0.8\%}_{+29.4\%}$ $^{+1.2\%}_{+1.2\%}$
b.4 $gg \rightarrow HZ$	g g > h z [QCD]	$6.537 \pm 0.030 \cdot 10^{-2}$	$^{+29.4\%}_{-21.3\%}$ $^{-1.2\%}_{+46.0\%}$ $^{+1.5\%}_{+1.5\%}$
b.5 $gg \rightarrow HZg$	gg>hzg[QCD]	$5.465 \pm 0.020 \cdot 10^{-2}$	$^{+46.0\%}_{-29.4\%}$ $^{+1.5\%}_{-1.6\%}$
b.6 $gg \rightarrow ZZ$	g g > z z [QCD]	1.313 ± 0.004	$^{+27.1\%}_{-20.1\%}$ $^{+0.8\%}_{-1.0\%}$
b.7 $gg \rightarrow ZZg$	gg>zzg[QCD]	0.6361 ± 0.002	+45.4% $+1.2%$
b.8 $gg \rightarrow Z\gamma$	gg>za[QCD]	1.265 ± 0.0007	$\begin{array}{rrrr} -29.1\% & -1.2\% \\ +30.2\% & +0.9\% \\ -22.2\% & -1.1\% \end{array}$
b.9 $gg \rightarrow Z\gamma g$	gg>zag[QCD]	0.4604 ± 0.001	+43.7% +0.7% -28.4% -1.0%
b.10 $gg \rightarrow \gamma \gamma$	gg>aa[QCD]	$5.182 \pm 0.010 \cdot 10^{+2}$	$^{+72.3\%}_{-43.4\%}$ $^{+1.2\%}_{-1.5\%}$
b.11 $gg \rightarrow \gamma \gamma g$	gg>aag [QCD]	19.22 ± 0.030	+59.7% +0.9% -35.7% -1.2%
			106 507 10 707
b.12 $gg \rightarrow W^+W^+$	g g > w+ w- [QCD]	4.099 ± 0.010	$^{+26.5\%}_{-19.7\%}$ $^{+0.7\%}_{-1.0\%}$ $^{+45.2\%}_{+1.1\%}$

Valentin Hirschi, SLAC

Squaring loops

ERC MiniWorkshop

SM TABLES (II)

Process	Syntax	Cross section (pb)	$\Delta_{\hat{\mu}} \Delta_{PDF}$
Triple bosons		$13 \mathrm{TeV}$	
c.1 $pp \rightarrow HHH$	pp>hhh [QCD]	$3.968 \pm 0.010 \cdot 10^{-5}$	$+31.8\% +1.7\% \\ -22.6\% -1.7\%$
c.2 $gg \rightarrow HHZ$	gg>hhz[QCD]	$5.260 \pm 0.009 \cdot 10^{-5}$	$^{+31.2\%}_{-22.2\%}$ $^{+1.6\%}_{-1.6\%}$
c.3 $gg \rightarrow HZZ$	gg>hzz [QCD]	$1.144 \pm 0.004 \cdot 10^{-4}$	$+31.1\% +1.6\% \\ -22.2\% -1.5\%$
c.4 $gg \rightarrow HZ\gamma$	gg>hza[QCD]	$6.190 \pm 0.020 \cdot 10^{-6}$	$^{+29.3\%}_{-21.2\%}$ $^{+1.1\%}_{-1.2\%}$
c.5 $pp \rightarrow H\gamma\gamma$	pp>haa [QCD]	$6.058 \pm 0.004 \cdot 10^{-6}$	$+30.3\% +1.3\% \\ -21.8\% -1.3\%$
c.6 $pp \rightarrow HW^+W^-$	g g > h w+ w- [QCD]	$2.670 \pm 0.007 \cdot 10^{-4}$	$+31.0\% +1.5\% \\ -22.2\% -1.6\%$
c.7 $gg \rightarrow ZZZ$	gg>zzz[QCD]	$6.964 \pm 0.009 \cdot 10^{-5}$	$^{+30.9\%}_{-22.1\%}$ $^{+1.5\%}_{-1.5\%}$
c.8 $gg \rightarrow ZZ\gamma$	gg>zza [QCD]	$3.454 \pm 0.010 \cdot 10^{-6}$	$^{+28.7\%}_{-20.9\%}$ $^{+1.0\%}_{-1.1\%}$
c.9 $gg \rightarrow Z\gamma\gamma$	gg>zaa [QCD]	$3.079 \pm 0.005 \cdot 10^{-4}$	$+28.0\% +0.9\% \\ -20.9\% -1.2\%$
c.10 $gg \rightarrow ZW^+W^-$	g g > z w+ w- [QCD]	$8.595 \pm 0.020 \cdot 10^{-3}$	$+26.9\% +0.7\% \\ -19.5\% -0.7\%$
c.12 $gg \rightarrow \gamma W^+ W^-$	g g > a w+ w- [QCD]	$1.822 \pm 0.005 \cdot 10^{-2}$	$^{+28.7\%}_{-20.9\%} {}^{+0.9\%}_{-1.1\%}$

SM TABLES (III)

Process Selected $2 \rightarrow 4$		Syntax	Cross section (pb) $\Delta_{\hat{\mu}} \Delta_{PDI}$ 13 TeV	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p ightarrow Hjjj p ightarrow HHjj p ightarrow HHHj p ightarrow HHHH $g ightarrow e^+e^-\mu^+\mu^-$ $p ightarrow HZ\gamma j$	<pre>p p > h j j j QED=1 [QCD] p p > h h j j QED=1 [QCD] p p > h h h j [QCD] p p > h h h h [QCD] g g > e+ e- mu+ mu- [QCD] g g > h z a g [QCD]</pre>	$\begin{array}{c} 2.519 \pm 0.005 \\ 1.085 \pm 0.002 \cdot 10^{-2} \\ 4.981 \pm 0.008 \cdot 10^{-5} \\ 1.080 \pm 0.003 \cdot 10^{-7} \\ 2.022 \pm 0.003 \cdot 10^{-3} \\ 4.950 \pm 0.008 \cdot 10^{-6} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
e^+e^- processes			$\hat{s} = 500~{ m G}$	eV
e.2 e^+e^-	$\stackrel{-}{\rightarrow} ggg$ $\stackrel{-}{\rightarrow} HH$ $\stackrel{-}{\rightarrow} HHgg$	e+ e- > g g g [QED] e+ e- > h h [QED] e+ e- > h h g g [QED]	$\begin{array}{c} 2.526 \pm 0.004 \cdot 10^{-6} \\ 1.567 \pm 0.003 \cdot 10^{-5} \\ 6.629 \pm 0.010 \cdot 10^{-11} \end{array}$	$+31.2\% \\ -22.0\% \\ +0.0\% \\ -0.0\% \\ +19.2\% \\ -14.8\%$
Miscellaneous			$13 { m TeV}$	
f.1 p	$p \rightarrow tt$	pp>tt [QED]	$4.045 \pm 0.007 \cdot 10^{-15}$	$^{+0.2\%}_{-0.8\%}$ $^{+1.1\%}_{-1.1\%}$

SM TABLES (IV) (PRELIMINARY)

Process Bosonic decays	Syntax	Partial width (GeV)
g.1 $H \rightarrow jj$	h > j j [QCD]	$1.740 \pm 0.0006 \cdot 10^{-4}$
g.2 $H \rightarrow j j j$	h > j j j [QCD]	$3.413 \pm 0.010 \cdot 10^{-4}$
g.3 $H \rightarrow j j j j j$	h > j j j j QED=1 [QCD]	$1.654 \pm 0.004 \cdot 10^{-4}$
g.4 $H \rightarrow \gamma \gamma$	h > a a [QED]	$9.882 \pm 0.002 \cdot 10^{-6}$
g.5 $H \rightarrow \gamma \gamma j j$	h > a a j j [QCD]	$7.450 \pm 0.030 \cdot 10^{-13}$
g.6 $H \rightarrow \gamma \gamma \gamma \gamma$	h > a a a a [QED]	0.0
g.7 $Z \rightarrow ggg$	z > g g g [QCD]	$3.986 \pm 0.010 \cdot 10^{-6}$

SM TABLES (IV) (PRELIMINARY)

Process Bosonic decays	Syntax	Partial width (GeV)
g.1 $H \rightarrow jj$	h > j j [QCD]	$1.740 \pm 0.0006 \cdot 10^{-4}$
g.2 $H \rightarrow j j j$	h > j j j [QCD]	$3.413 \pm 0.010 \cdot 10^{-4}$
g.3 $H \rightarrow j j j j j$	h > j j j j QED=1 [QCD]	$1.654 \pm 0.004 \cdot 10^{-4}$
g.4 $H \rightarrow \gamma \gamma$	h > a a [QED]	$9.882 \pm 0.002 \cdot 10^{-6}$
g.5 $H \rightarrow \gamma \gamma j j$	h > a a j j [QCD]	$7.450 \pm 0.030 \cdot 10^{-13}$
g.6 $H \rightarrow \gamma \gamma \gamma \gamma$	h > a a a a [QED]	0.0
g.7 $Z \rightarrow ggg$	z > g g g [QCD]	$3.986 \pm 0.010 \cdot 10^{-6}$

[Implementation for decays is inefficient, but sufficient for most relevant decays]

TAKE-HOME MESSAGE

- Direct loop-induced process simulation with MG5_aMC@NLO finalized:
 - 2 > 2 on a laptop
 - 2 > 3 on a small size cluster
 - 2 > 4 case-by-case but typically requires a large size cluster

TAKE-HOME MESSAGE

- Direct loop-induced process simulation with MG5_aMC@NLO finalized:
 - 2 > 2 on a laptop
 - 2 > 3 on a small size cluster
 - 2 > 4 case-by-case but typically requires a large size cluster
- TIR needs further optimizations or a different implementation to be competitive vs OPP, thanks to an efficient MC over helicity. It however remains a great stability rescue mechanism.

TAKE-HOME MESSAGE

- Direct loop-induced process simulation with MG5_aMC@NLO finalized:
 - 2 > 2 on a laptop
 - 2 > 3 on a small size cluster
 - 2 > 4 case-by-case but typically requires a large size cluster
- TIR needs further optimizations or a different implementation to be competitive vs OPP, thanks to an efficient MC over helicity. It however remains a great stability rescue mechanism.

• Public version released in O (~weeks)

