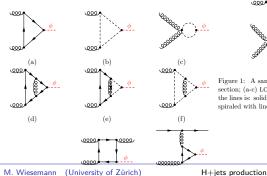
H+jets part I aMCSusHi: combining MG5_aMC@NLO with SusHi

Marius Wiesemann

University of Zürich

ERC miniworkshop

CERN (Switzerland), 1-2 June, 2015


- Higgs production at NLO+PS
- Combines the enormous capabilities of MG5_aMC@NLO (no need to tell you about) with matrix elements provided by SusHi

SusHi (Supersymmetric Higgs) [Harlander, Liebler, Mantler '12], [Liebler '15]

- inclusive Higgs cross sections $(y/p_T \text{ distributions at NLO/LO})$
- ▶ $gg \rightarrow \phi$ (NLO full, NNLO htl, EW effects), 5FS $bb \rightarrow \phi$ (NNLO)
- models: SM, 2HDM, MSSM and NMSSM
- MoRe-SusHi (Momentum Resummed SusHi): Analytical p_T resummation [Mantler, MW '12], [Harlander, Mantler, MW '14]

SusHi (Supersymmetric Higgs) [Harlander, Liebler, Mantler '12], [Liebler '15]

- inclusive Higgs cross sections $(y/p_T \text{ distributions at NLO/LO})$
- ▶ $gg \rightarrow \phi$ (NLO full, NNLO htl, EW effects), 5FS $bb \rightarrow \phi$ (NNLO)
- models: SM, 2HDM, MSSM and NMSSM we
- MoRe-SusHi (Momentum Resummed SusHi): Analytical p_T resummation [Mantler, MW '12], [Harlander, Mantler, MW '14]
- ▶ Relevant for aMCSusHi: $gg \rightarrow \phi$ N Q Core of SusHi

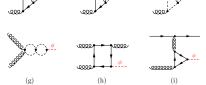


Figure 1: A sample of Feynman diagrams for $gg \rightarrow \phi$ contributing to the NLO cross section; (a-c) LO, (d-g) virtual and (h-i) real corrections. The graphical notation for the lines is: solid straight $\hat{=}$ quark; spiraled $\hat{=}$ gluon; dashed $\hat{=}$ scalar (squark or Higgs); spiraled with line $\hat{=}$ gluino.

- Higgs production at NLO+PS
- Combines the enormous capabilities of MG5_aMC@NLO (no need to tell you about) with matrix elements provided by SusHi

- Higgs production at NLO+PS
- Combines the enormous capabilities of MG5_aMC@NLO (no need to tell you about) with matrix elements provided by SusHi
- from SusHi: analytic ggF amplitudes at NLO (one+two loop)
 - two loops: not automized
 - one loop: for NLO tough to integrate in IR regions

- Higgs production at NLO+PS
- Combines the enormous capabilities of MG5_aMC@NLO (no need to tell you about) with matrix elements provided by SusHi
- from SusHi: analytic ggF amplitudes at NLO (one+two loop)
 - two loops: not automized
 - one loop: for NLO tough to integrate in IR regions
- setup extremely simple:

> ./set_up_ggH_MSSM_script.pl <ggH-folder>

aMCSusHi-script

 $> ./{\sf set_up_ggH_MSSM_script.pl} < {\sf ggH-folder} >$

- $\blacktriangleright\ <\!ggH-folder\!>$ must be subfolder of MG5_aMC@NLO
- sets up MG5_aMC@NLO gg > h HEFT folder (no virtuals)

 $\label{eq:mg5_amc} \begin{array}{l} MG5_aMC> \mbox{import model heft-no_b_mass} \\ MG5_aMC> \mbox{define } p = p & b \sim \\ MG5_aMC> \mbox{generate } p > h & [\mbox{real=QCD}] \\ MG5_aMC> \mbox{output } < \mbox{ggH-folder} > \\ MG5_aMC> \mbox{exit} \end{array}$

- downloads and installs SusHi and FeynHiggs fully automatic (possible to provide their paths if already installed)
- links them to MG5_aMC@NLO and replaces matrix elements
 - adds SusHi and FeynHiggs libraries to makefile(s)
 - initializes SusHi in SOURCE/SETRUN.F
 - \blacktriangleright replaces matrix elements (born, virtuals, reals) in $\mathrm{P0}_^*$ folders
- Running in <GGH-FOLDER> as in the ordinary MG5_aMC@NLO (except SusHi input blocks in param_card.dat)

Example for SM (CARDS/PARAM_CARD.DAT):

```
******************************
## INFORMATION FOR MASS
******
Block mass
  15 1.777000e+00 # MTA
  23 9.118800e+01 # MZ
  25 1.250000e+02 # MH -- only effective if FEYNHIGGS Block is absent
[...]
            *****
## INFORMATION FOR SMINPUTS
******************************
Block sminputs
   1 1.325070e+02 # aEWM1
   2 1 166390e-05 # Gf
   3 1.180000e-01 # aS
# additional information needed for SusHi
   4 9.118760e+01 # m Z(pole)
   5 0.416000e+01 # m_b(m_b) -- only used if m_b is not on-shell
   6 1.730000e+02 # m_t(pole) -- top mass is set here
ſ...1
***********
## INFORMATION FOR SUSHI
******
Block sushi
              # model: 0 = SM, 1 = MSSM, 2 = 2HDM
 1
     0
              # 0 = light Higgs (h), 1 = pseudoscalar (A), 2 = heavy Higgs (H)
 2
Block renormbot # Renormalization of the bottom sector
             # m b used for bottom Yukawa: 0 = 0S, 1 = MSbar(m b), 2 = MSbar(muR)
 1
 4 4.75d0
              # mbOS fixed -- used if m_b is on-shell (default)
Block factors
 1 0.d0
              # factor for vukawa-couplings: c
 2 1.d0
              # t
 3 1.d0
              # b
```

aMCSusHi-folder (<GGH-FOLDER>)

Example for 2HDM (CARDS/PARAM_CARD.DAT):

```
## INFORMATION FOR MASS
******
Block mass
  25 1.250000e+02 # Higgs mass h for 2HDM in SusHi
  35 3.000000e+02 # Higgs mass H for 2HDM in SusHi
  36 2.700000e+02 # Pseudoscalar Higgs mass A for 2HDM in SusHi
[...]
           *****
  INFORMATION FOR SUSHI
******
Block sushi
              # model: 0 = SM, 1 = MSSM, 2 = 2HDM
 1
     2
 2
              \# 0 = light Higgs (h), 1 = pseudoscalar (A), 2 = heavy Higgs (H)
Block renormbot # Renormalization of the bottom sector
              # m b used for bottom Yukawa: 0 = 0S, 1 = MSbar(m b), 2 = MSbar(muR)
 1
     0
 2
          # tan(beta)-res. of Y_b: 0 = no, 1 = naive, 2 = full (for OS only)
              # mbOS fixed
 4 4 75d0
Block 2hdm # 2HDM version according to arXiv:1106.0034
              # (1=I,2=II,3=III,4=IV)
 2
Block minpar
 3
     50d0
              # tanh
Block alpha
 0.0247d0
              # mixing in Higgs sector
Block factors
              # factor for yukawa-couplings: c
 1
     000
 2 1d0
              # t
 3 1d0
              # h
```

- Higgs production at NLO+PS
- Combines the enormous capabilities of MG5_aMC@NLO (no need to tell you about) with matrix elements provided by SusHi
- from SusHi: analytic ggF amplitudes at NLO (one+two loop)
 - two loops: not automized
 - one loop: for NLO tough to integrate in IR regions
- setup extremely simple:

> ./set_up_ggH_MSSM_script.pl <ggH-folder>

- Higgs production at NLO+PS
- Combines the enormous capabilities of MG5_aMC@NLO (no need to tell you about) with matrix elements provided by SusHi
- from SusHi: analytic ggF amplitudes at NLO (one+two loop)
 - two loops: not automized
 - one loop: for NLO tough to integrate in IR regions
- setup extremely simple:

 $> ./set_up_ggH_MSSM_script.pl < ggH-folder>$

What can we compute?

- Higgs production at NLO+PS
- Combines the enormous capabilities of MG5_aMC@NLO (no need to tell you about) with matrix elements provided by SusHi
- from SusHi: analytic ggF amplitudes at NLO (one+two loop)
 - two loops: not automized
 - one loop: for NLO tough to integrate in IR regions
- setup extremely simple:

> ./set_up_ggH_MSSM_script.pl <ggH-folder>

What can we compute?

- official version: NLO+PS Higgs cross sections in SM (top+bottom mass effects), 2HDM and MSSM
- consistent treatment of all MSSM parameter (FeynHiggs link)
- ▶ any (new) SusHi capabilities available (eg, $\tan \beta$ resummation)
- already available but yet to be published: NMSSM (in collaboration with Stefan Liebler)

aMCSusHi: Hadronic Higgs production through NLO+PS in the SM, the 2HDM and the MSSM

This page contains the code to generate events for Higgs production at the LHC through gluon fusion.

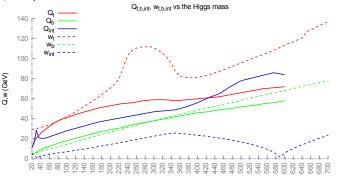
NLO+PS Higgs production via gluon fusion (g g > h) in the SM with exact quark masses and in 2HDM/MSSM is built by a script. The script has to be used directly in the main folder (of the proper version) of MadGraph5_aMC@NLO (\Rightarrow MG5_aMC homepage). The matrix elements are taken from SusHi (\Rightarrow SusHi homepage). Compiled versions of SusHi and FeynHiggs (\Rightarrow FeynHiggs homepage) are required. These codes can be either downloaded and installed automatically by this script or set up by the user beforehand. The script then modifies the proper MG5_aMC files and links SusHi and FeynHiggs.

More information can be found in the README.

Authors : Hendrik Mantler and Marius Wiesemann

Reference:

Hadronic Higgs production through NLO+PS in the SM, the 2HDM and the MSSM

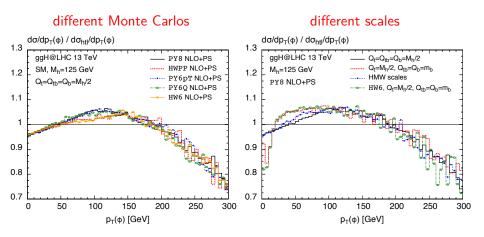

H. Mantler and M. Wiesemann. Apr 28, 2015. 25 pp.

e-Print: ⇒arXiv:1504.06625 [hep-ph]

Download instructions and script here

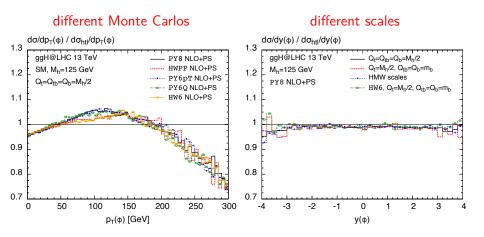
NLO+PS Higgs production: Matching Scales

- ▶ b-loop: non-factorizing terms for $p_T > m_b$ [Grazzini, Sargsyan '13]
- treatment as finite remainder [Banfi, Monni, Zanderighi '13]
- adjustment of matching scales (generally lower than for top quark) [Harlander, Mantler, MW '14], [Bagnaschi, Vicini '15]

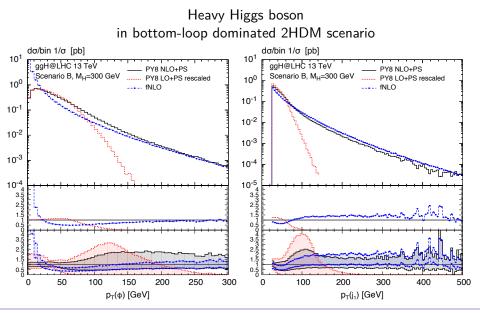

m_h (GeV)

ongoing comparison of scales and tools (applying aMCSusHi)

[Bagnaschi, Harlander, Mantler, Vicini, MW 'to be published]


Results: NLO+PS Higgs production [Mantler, MW '15]

SM mass effects (full theory/heavy top limit)


Results: NLO+PS Higgs production [Mantler, MW '15]

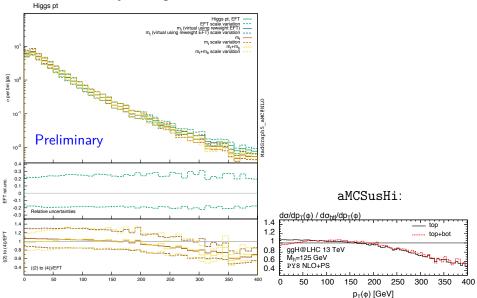
SM mass effects (full theory/heavy top limit)

M. Wiesemann (University of Zürich)

Results: NLO+PS Higgs production [Mantler, MW '15]

M. Wiesemann (University of Zürich)

Higgs+jets in SM: Merging higher multiplicities (FxFx)


in collaboration with Rikkert Frederix, Stefano Frixion and Eleni Vryonidou

- ► We use the HEFT-NLO model
- 0-jet NLO exact matrix elements from aMCSusHi (modified script for HEFT-NLO model)
- ► FxFx merging of 1 and 2 jets at NLO in HEFT
- replacing all one-loop contributions by exact top mass (details by Eleni)
- how to account for bottom-quark loop? merged top result + bottom and interference from aMCSusHi:

$$\sigma_{(y_t+y_b)^2} = \sigma_{y_t^2}(0, 1, 2\text{-jet}, \mathsf{FxFx}) + \sigma_{y_t y_b}(0\text{-jet}, Q_{tb}) + \sigma_{y_b^2}(0\text{-jet}, Q_b)$$

Results: Combination of top (merged) and bottom (0-jet)

0,1-jet merged:

to be continued by Eleni...

H+jets Part II Merging higher multiplicities at NLO with top mass effects

Eleni Vryonidou Université catholique de Louvain

In collaboration with: R. Frederix, S. Frixione and M. Wiesemann

ERC Miniworkshop CERN, 1/6/15

Higgs plus jets at NLO

Available relevant pieces:

- H+0jet contribution computed exactly at NLO and matched to the parton shower with aMCSushi (see Marius' talk, arxiv:1504.06625)
- H+1,2... jets available at NLO in the HEFT (HC model: arxiv:1306.6464)
- Merging possible at NLO in MG5_aMC@NLO with FxFx (arxiv:1209.6215)
- Possibility to compute 1-loop amplitudes for H+1,2,3 jets with MadLoop

Higgs plus jets at NLO

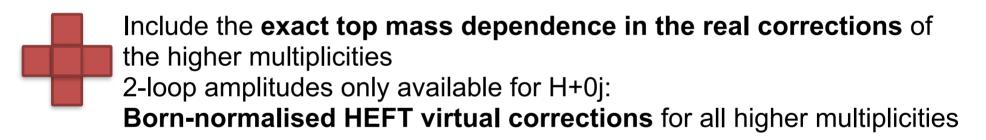
Available relevant pieces:

- H+0jet contribution computed exactly at NLO and matched to the parton shower with aMCSushi (see Marius' talk, arxiv:1504.06625)
- H+1,2... jets available at NLO in the HEFT (HC model: arxiv:1306.6464)
- Merging possible at NLO in MG5_aMC@NLO with FxFx (arxiv:1209.6215)
- Possibility to compute 1-loop amplitudes for H+1,2,3 jets with MadLoop

*Higher multiplicity samples provide better description of hard emissions which are poorly described by the parton shower

*****Top mass effects also important in the high p_T tails

The main idea


Combine 1) the exact 0j NLO result: top and bottom included (aMCSusHi) 2) higher multiplicities at NLO in HEFT

Merged H+jets NLO samples with FxFx

The main idea

Combine 1) the exact 0j NLO result: top and bottom included (aMCSusHi) 2) higher multiplicities at NLO in HEFT

Merged H+jets NLO samples with FxFx

(similar to what we did for HH arxiv:1408.6542,1407.0281,1401.7340)

Technical details (1)

Direct generation at NLO with loop-induced processes not feasible:

- extremely time consuming due to PS scanning with loop amplitudes
- possibly unstable due to loop instabilities in the soft and collinear regions

Reweighting is currently the only viable option: i.e. generate all the events in HEFT and adjust weights afterwards

- Use weights stored internally for scale and pdf reweighting (arxiv:1110.4738)
- New intermediate event format in version 2.3 allows easier identification of various weights:

$$d\sigma^{(\mathbb{H})} = d\phi_{n+1} \left(\mathcal{R} - \mathcal{C}_{MC} \right) ,$$

$$d\sigma^{(\mathbb{S})} = d\phi_{n+1} \left[\left(\mathcal{B} + \mathcal{V} + \mathcal{C}^{int} \right) \frac{d\phi_n}{d\phi_{n+1}} + \left(\mathcal{C}_{MC} - \mathcal{C} \right) \right]$$

MC@NLO formalism

4

i.e. Born, real, virtual, counterterms

$$\begin{array}{ccc} \mathcal{B}, \mathcal{V}, \mathcal{C}^{(int)}, \mathcal{C}_{MC} & \times & \mathcal{B}_{FT} / \mathcal{B}_{HEFT} \\ \mathcal{R} & \times & \mathcal{R}_{FT} / \mathcal{R}_{HEFT} \end{array} \longrightarrow \begin{array}{c} \mathsf{New \ event \ weight} \end{array}$$

Technical details (2)

Each weight accompanied by the PDG numbers of the particles in the relevant process: i.e. weight associated with g g > h g g comes with a "21 21 25 21 21" tag

Allows us to identify the relevant process and call the corresponding loop amplitude in a more straightforward way

1) Loop Amplitude library

Aim: To provide results for all 1-loop matrix elements (Born and real)

- · Created and compiled beforehand using a script
- Input: all the processes (in PDG codes) that will be needed for H+1,2,3 jets
- Similar to the usual MadLoop standalone output but now all combined in a dynamic library (only tops in the loops)
- Library wrapper takes PDG codes as inputs, checks for permutations of PDG codes/ momenta to call the right amplitude

2) 0-jet contribution

- Not reweighted, obtained by linking the exact matrix elements (1-loop and 2-loop) from aMCSusHi (Marius' talk)
- Top x bottom contribution and bottom² included
- Events generated separately, showered with the appropriate/different scales (1409.0531)
- · Results added at the end at the plot level

Run setup and parameters

Merge H+0,1 jet (for now) at NLO

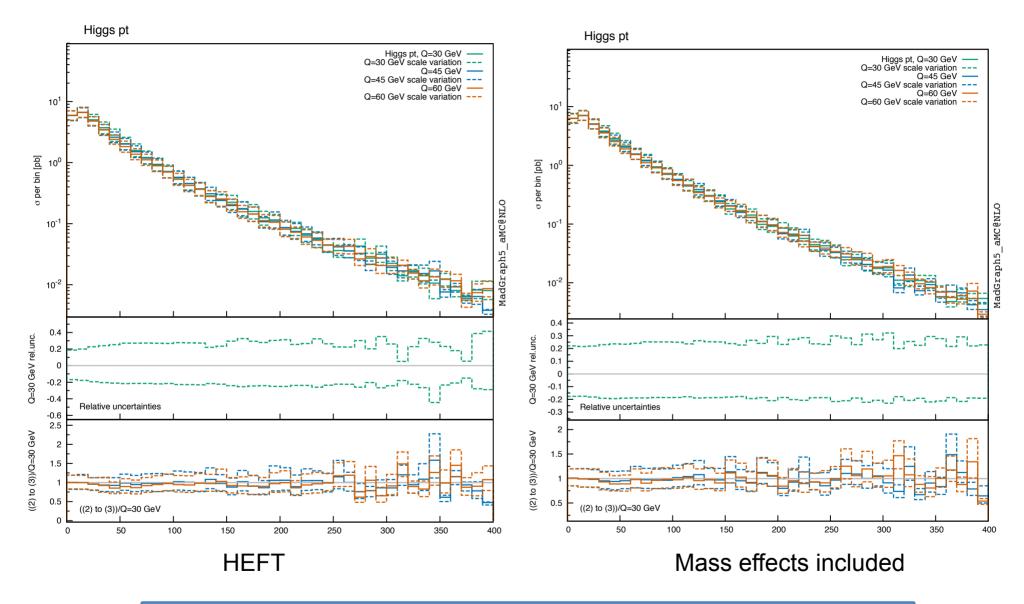
Automatic computation of the scale and pdf uncertainties (as usual in MG5_aMC@NLO)

$$\mu_{hard} \simeq m_T(H)$$

Merging scale variations: Q_{FxFx}=30, 45, 60 GeV PYTHIA8 for the shower

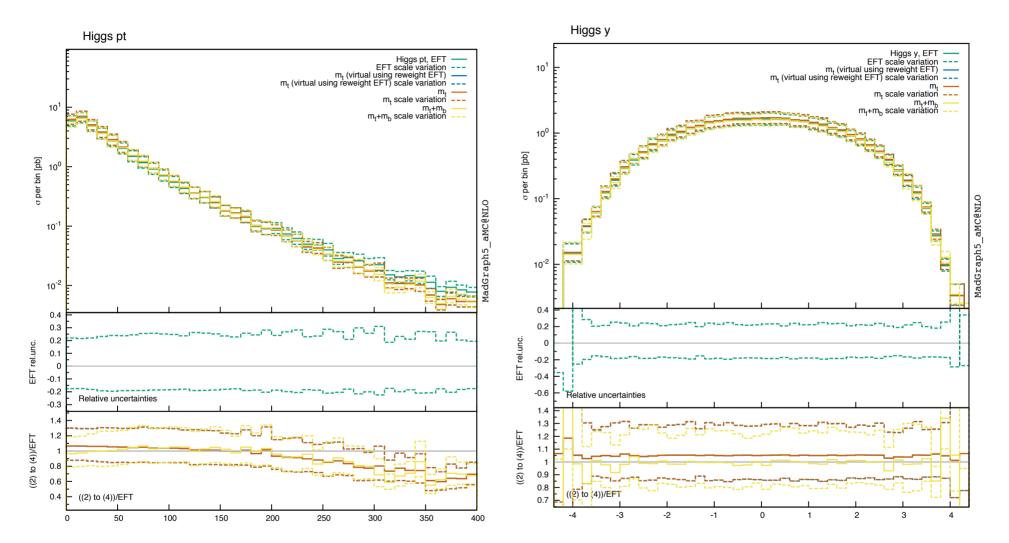
Shower scales for various contributions:

$$\langle Q_{sh}^{t^2} \rangle \sim \sqrt{\hat{s}}/2; \ \langle Q_{sh}^{b^2} \rangle = 23 \text{ GeV}; \ \langle Q_{sh}^{b*t} \rangle = 34 \text{ GeV}$$
 (arxiv:1409.0531)


Comparison only for H+0,1-jet samples for the moment:

• top exact in reals, EFT-Born rescaled virtuals (all reweighted), no bottom

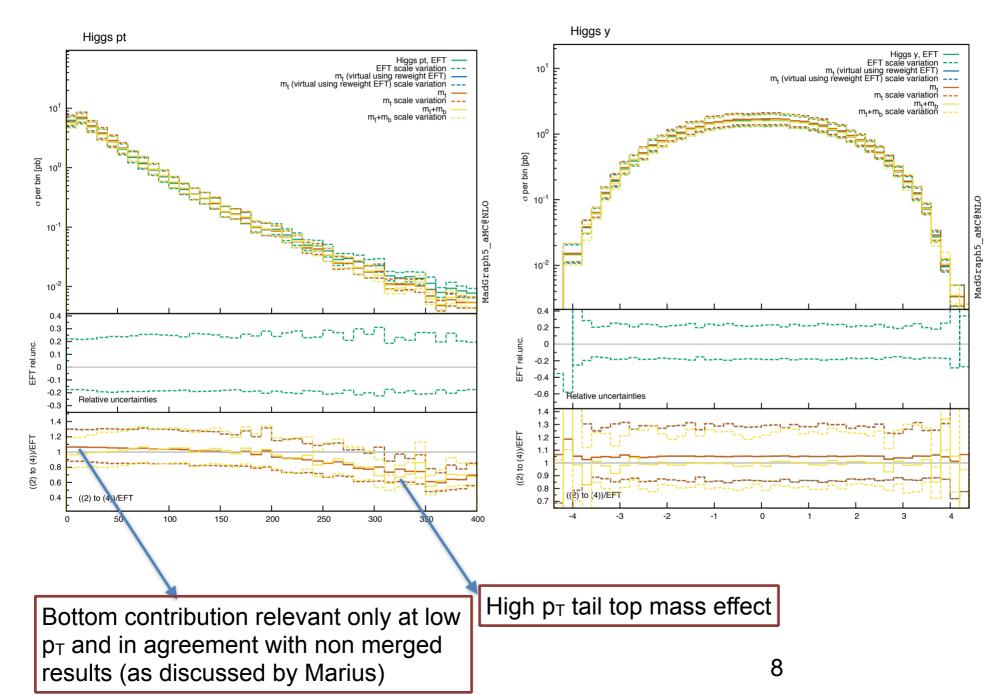
- top exact for 0-jet (from aMCSusHi)
- top and bottom exact for 0jet ("best" predictions)
- HEFT


Special thanks to Rikkert for all the plots All results are preliminary

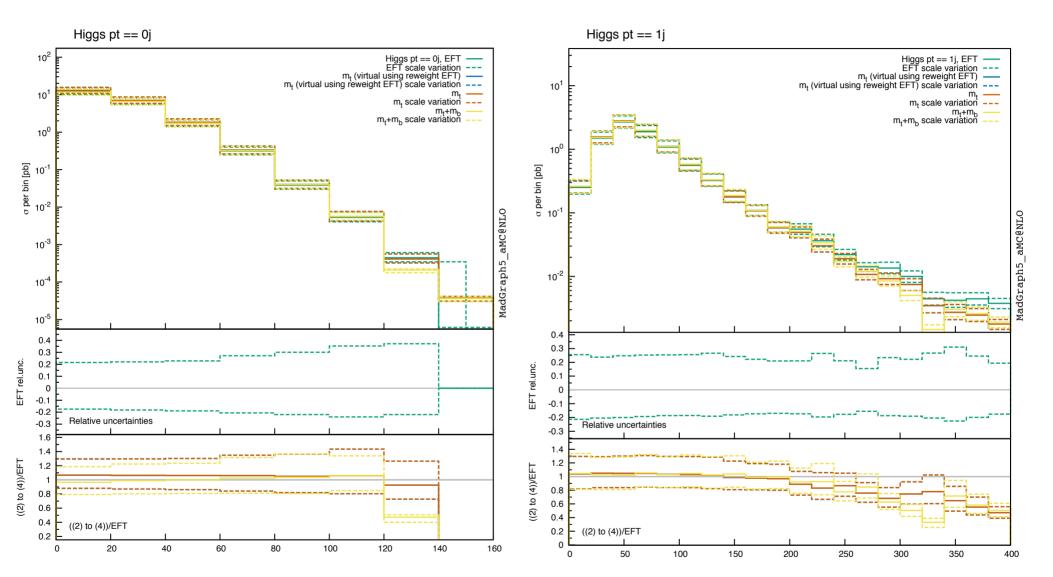
Merging scale variations


Merging scale uncertainty always within the hard scale ($\mu_{R,F}$) variations

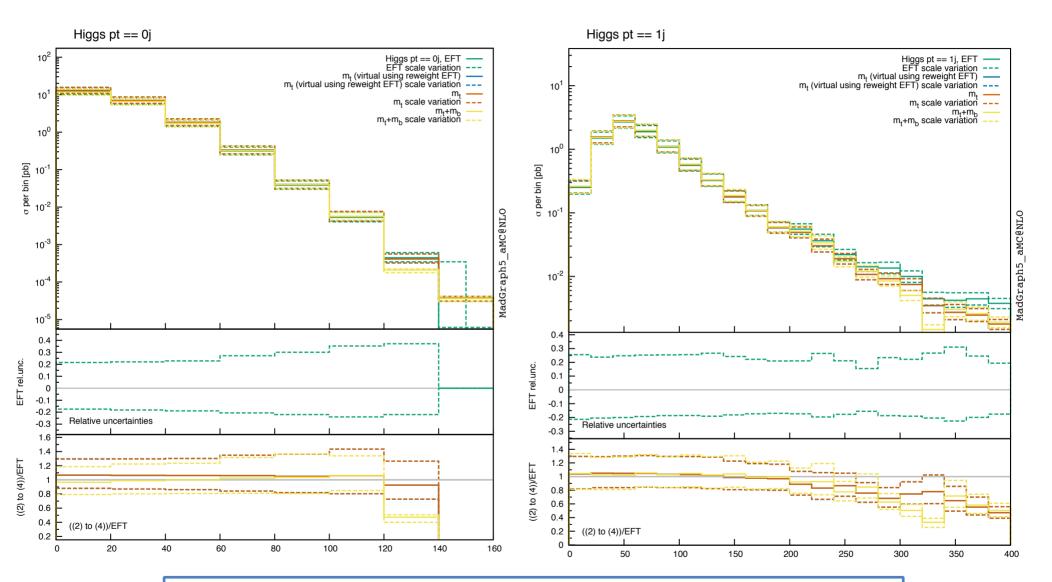
Results (1): Higgs pt and rapidity


8

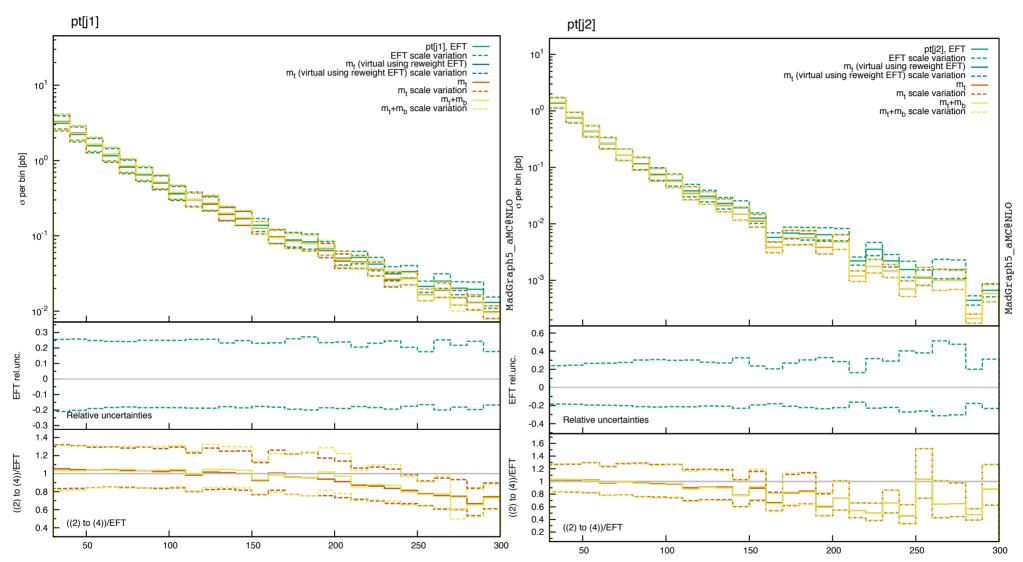
Results (1): Higgs pt and rapidity



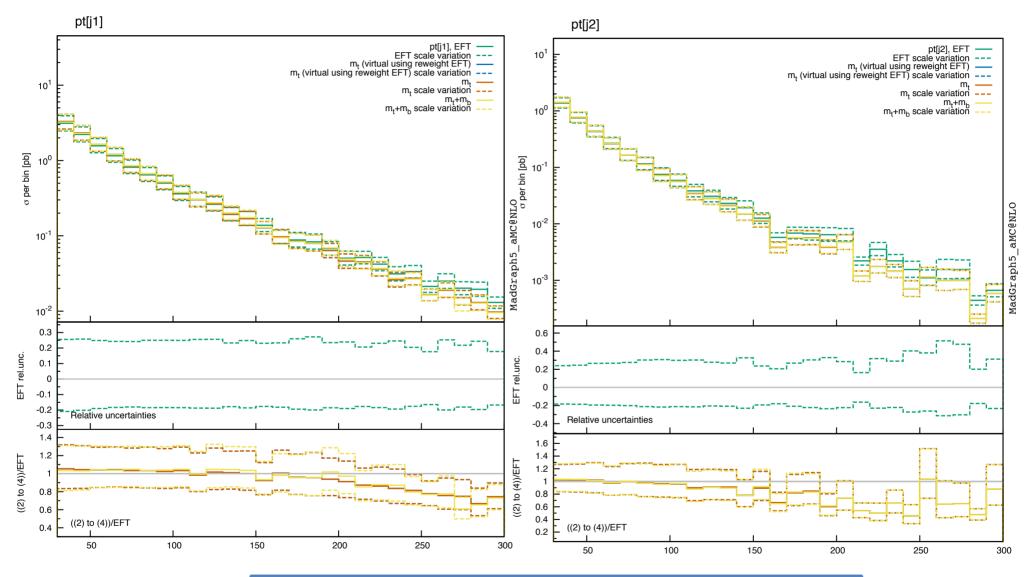
Bottom contribution relevant only at low p_T and in agreement with non merged results (as discussed by Marius)


Results (1): Higgs pt and rapidity

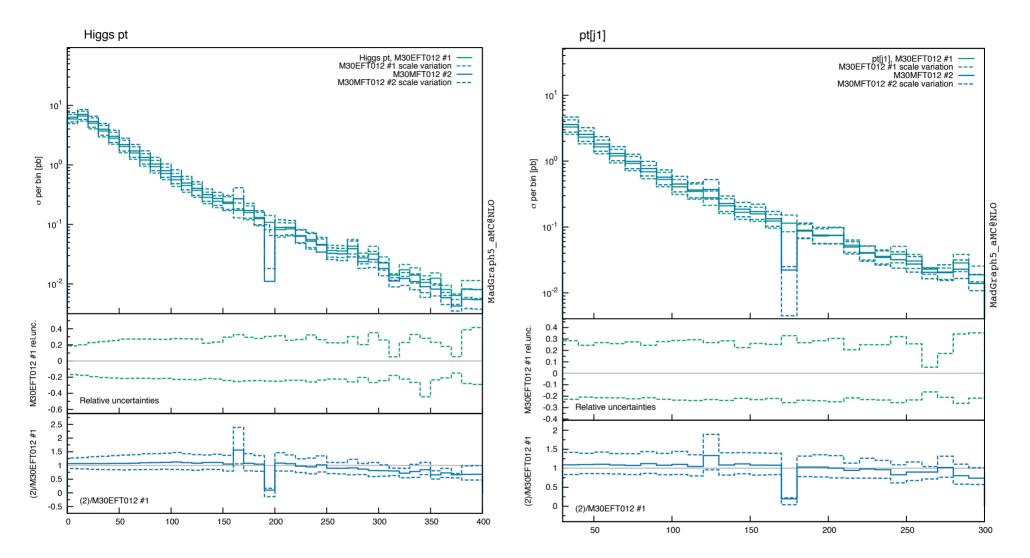
Results (2): Higgs p_T with jet binning

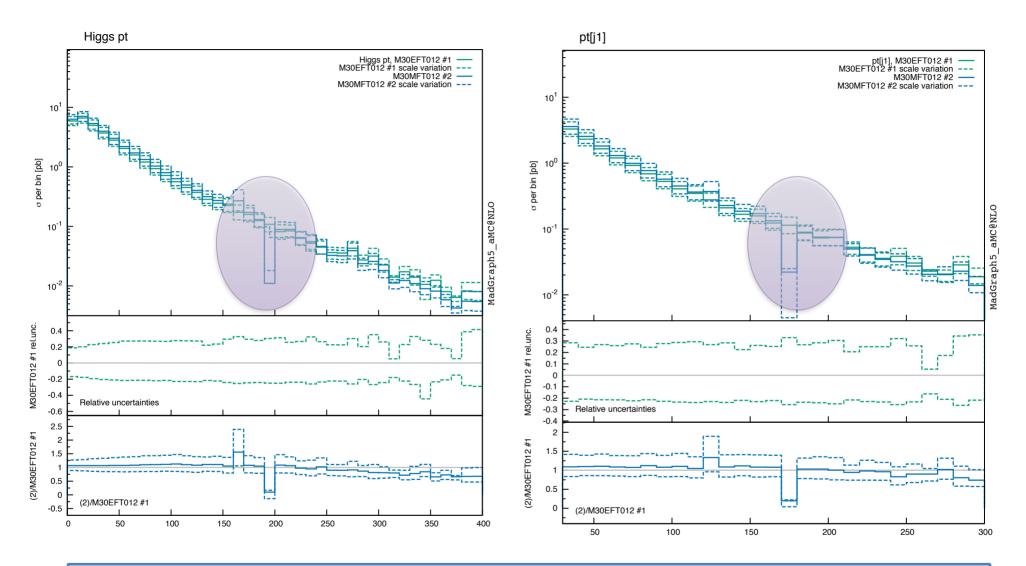


Results (2): Higgs p_T with jet binning

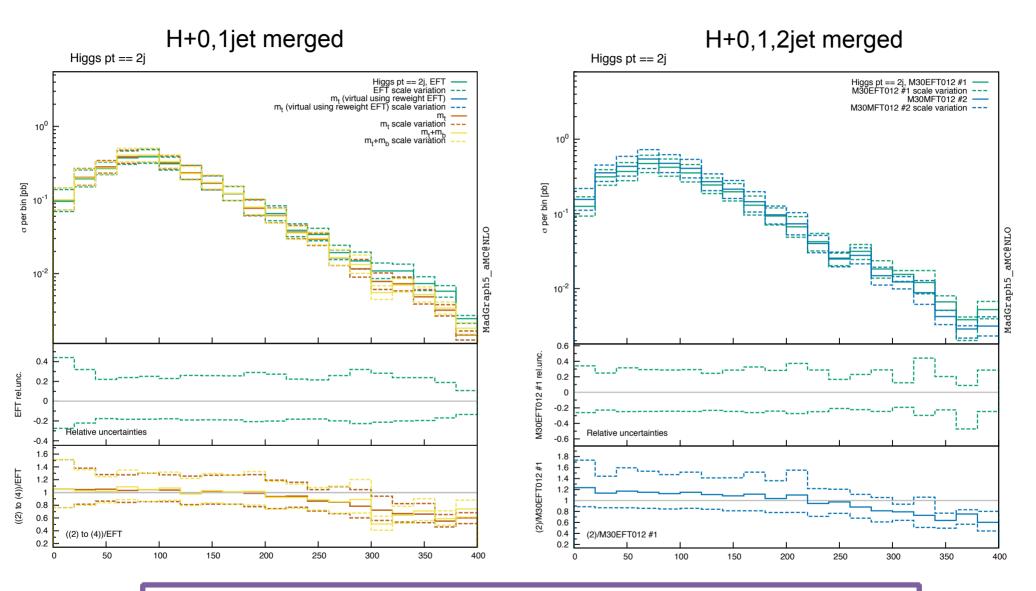


Top mass effects more important for 1-jet bin (30GeV p_T for the jets) Two-loop virtual have a non-visible effect (blue \rightarrow red)

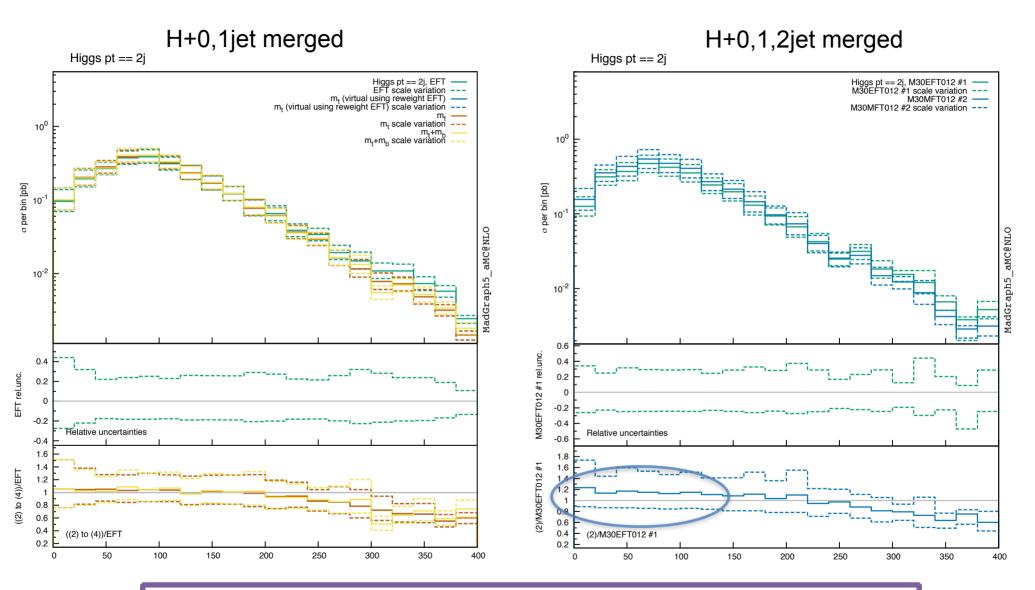

Results (1): Jets p_T

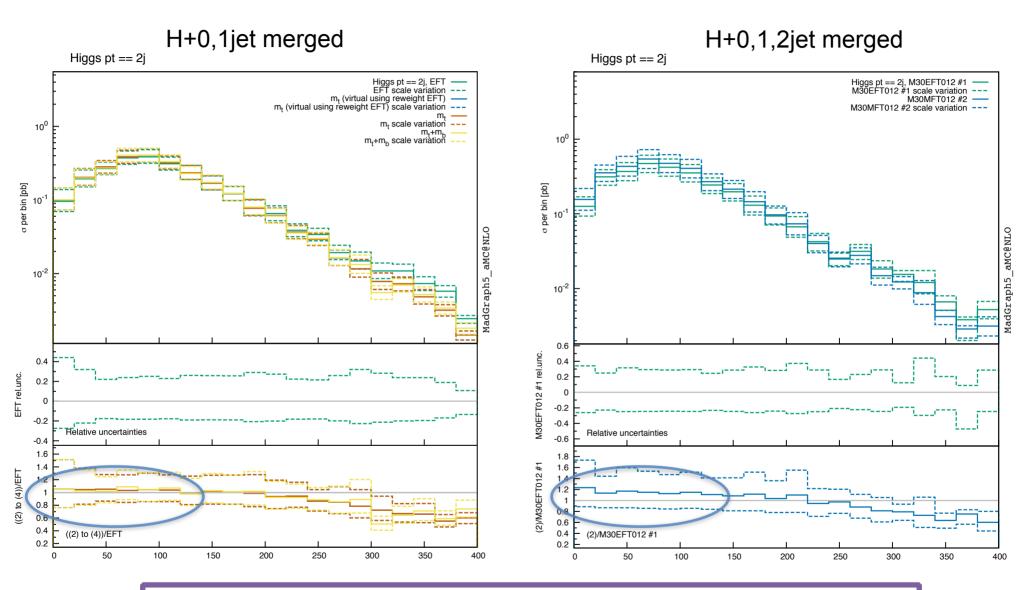


Results (1): Jets p_T



Again: top mass effects are important in the high pt tails with deviations reaching 30-40%




Some fluctuations: possibly instabilities in the loop amplitudes? More care needed with soft and collinear cut-offs? Further investigation required...

Larger deviation from EFT results in the low p_T region in the H+2jets bin

Larger deviation from EFT results in the low p_T region in the H+2jets bin

Larger deviation from EFT results in the low p_T region in the H+2jets bin

Conclusions-Outlook

Observations

- Top mass effects important at high pT tails
- 0-jet exact two loops virtual corrections impact very small, bottom quark contributions important at low pt
- 2-jets at NLO might be important for exclusive observables
- Merging scale uncertainty small compared to hard scale uncertainties
 TODO
- Increase statistics for more exclusive quantities
- Investigate instabilities in results including 2-jets at NLO
- Release user-friendly script like aMCSusHi
- Include bottom masses in higher multiplicities(?)...

Thanks for your attention...