

Accurate predictions for (heavy) charged Higgs production

Marco Zaro LPTHE-UPMC - Paris

In collaboration with Celine Degrande, Fabio Maltoni, Maria Ubiali, Marius Wiesemann

LHCTheory workshop, June 1st 2015

Motivation

- Discovery of a charged Higgs boson would be a clear sign of BSM physics
- Experimentalists push for having accurate fully differential predictions
- Testing ground for the MG5_aMC@NLO + NLOCT machinery
- 4FS and 5FS description possible: nice QCD exercise
- First NLO+PS computation of charged Higgs production in the 4FS

Slide from Maria Ubiali, Higgs (N)NLO MC and tools workshop for LHC Runll

2HDMs CHARGED HIGGS PRODUCTION AT COLLIDERS

M. Ubiali, "Charged Higgs production 4FS versus 5FS"

4FS and 5FS description

- Study the charged Higgs production in the 2HDM, for a heavy (m_H>200 GeV) Higgs boson pp→H⁻t + X
- Two possible schemes:
 - 5F (include b in proton, $m_b=0$): $gb \rightarrow H^- t$
 - Simpler process (lesser multiplicity)
 - No b mass effects
 - Worse description of b-related observables
 - Resum logs(m_b/Q)
 - 4F (keep mb $\neq 0$, no b in proton): $q\overline{q}/gg \rightarrow H^- t b_{p=0}$
 - b mass effects included in the matrix-element
 - Can be spoiled by large logs(mb/Q)
 - Better description of b-related observables

Cross-section

 $\sigma(y_b y_t) / \sigma(tot)$

• Structure of the H⁻tb vertex:

 $V_{t\bar{b}H^{-}} = -i\left(y_t P_R \cot\beta + y_b P_L \tan\beta\right)$

- Cross-section will receive 3 contributions:
 - $y_t^2 \sim 1/tan^2\beta$

•
$$y_b^2 \sim tan^2\beta$$

- $y_t y_b$, independent on β , vanishes in the 5FS
- y_ty_b term has maximum impact at tanβ~7-8 (5% of total xsect for m_H=200, <1% for m_H=600)
 In practice, it can be neglected
- Marco Zaro, 15-06-2015

- Nice agreement obtained at total xsect level, thanks to: Flechl, Klees, Kramer, Spira, Ubiali arXiv:1409.5615
 - Modern 4F/5F PDFs
 - Using MSbar bottom Yukawa: resum logs(m_H/m_b)
 - Suitable (low) value for $\mu_{R/F}$ Maltoni, Ridolfi, Ubiali arXiv:1203.6393

Out of the box results for distributions

 Large discrepancies observed by ATLAS between the two schemes

- Discrepancies can be reduced by
 - Using MSbar bottom Yukawa: resum logs(m_H/m_b)
 - µ_{F/R} choice: H_T/3
 - Choose a reduced shower scale (factor F in the plots)

Settings for the calculation

• Type II 2HDM @NLO generated with NLOCT

Degrande, arXiv:1406.3030

- LHC Run II, I 3TeV
- NNPDF2.3(3.0) 4FS/5FS at NLO(LO)
- µ_{F/R}=H_T/3
- m_H=200, 600GeV; m_t=172.5GeV;
- $m_b^{pole}=4.75 \text{ GeV}; m_b(m_b)=4.33 \text{ GeV}$
- Jets clustering: anti-k_T, R=0.4, p_T>25Gev, $|\eta|$ <2.5
- Higgs stable; leptonic top decay
 - Ib-jet from top + I from matrix-element (shower)
- Default shower scale (F=I) and shower scale reduced by F=4

Shower scale effects in

the matching

Shower scale effects and 5F vs 4F comparison

Reduced shower scale (F=4) improves shape agreement between 4FS and 5FS

5FS and 4FS comparison: NLO effects

NLO corrections crucial for shape agreement
Residual ~20% normalisation difference

SFS and 4FS comparison: NLO effects

- Larger K-factors in 5FS for b-jets
- Still, remarkable agreement between 5FS, 4FS

A heavier Higgs seems to stabilise jet K-factors

Smaller phase-space for radiation, shower approx. ~OK

MC comparison

- 4FS stabilizes MC predictions
- Very different shapes in 5FS for HW++ and PY8

MC comparison

- HW++ produces many B's close to the beam line
- Effect mitigated when 2 b-jets are required; still some differences at large ΔR in 4FS

Past vs present

Quite better agreement found (still, not really)

Next: no man's land

Next: no man's land

- No NLO prediction available (not even for total xsect) in the intermediate region
- The full $pp \rightarrow WbHb$ computation is needed
- Technical difficulties:
 - High multiplicity process
 - Non trivial phase space (waiting for new PS parameterization at NLO to account for radiation off resonances)
 - y_by_t term might be non-negligible here

Conclusions & Outlook

- Predictions for heavy charged Higgs have been presented for the first time at NLO+PS in the 4FS
- Scale tuning gives better agreement between 5 and 4FS
- 4FS gives better description of differential distributions, in particular related to b-kinematics
- 4FS reduces systematics due to MCs
- Gearing up for the intermediate region...