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A path for TMD extraction
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Multi-differential cross-sections involve non-perturbative QCD effects which go beyond the usual PDF 
formalism. New factorization theorem are required.

Status: Currently only Drell-Yan (Photon, Vector Boson, Higgs..), SIDIS, ee->2h processes are 
known to admit a proper factorization theorem (Collins ‘11, Echevarría-Idilbi-S. ’12):  
Q=M>>max(qT,hadronization scale, e.g. 1 GeV)! 

The evolution of TMDs allows compare experimental results at different  M 

Question: Can we check the UNIVERSALITY of TMDs? 

In principle many different experiments can provide data; in practice..  

DY: Tevatron data, LHC is starting now..  
SIDIS: 
1) Current experimental results only for Q=1-2 GeV!!! (Hermes, Compass). Is leading twist 

factorization  still a good approximation? What would be the ideal  photon momentum? Do we 
have to wait future colliders (EIC)? 

2) Are fragmentation functions theoretically and experimentally  sufficiently  known?



DY, SIDIS, ee-> 2j, TMD’s and 
energy scales

Q=M=dilepton invariant mass
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Example: Vector boson  (Tevatron, LHC)  and Higgs production at LHC (up to a certain precision, 
qT>5-10 GeV..), 
Some DIS data from HERA

Example: DY Tevatron experiments (E288: Q=4-15GeV, qt<2 GeV) 
no  (usable) DIS data… waiting for EIC..

Issues: Can we understand Compass DY-DIS  results in this formalism (Q=1-2 GeV)? 
(Hermes, Compass, JLAB) Q2 6� ⇤2

QCD



TMD’s factorization: principles and  
formalism

Q=M=dilepton invariant mass

All coefficients are extracted matching  effective field theories. During the matching the IR 
parts have to be regulated consistently above and below the matching scales

Practical issue: what’s the best way to write the TMDs to recover the perturbative limit? 

Important issue: The estimate of theoretical errors (convergence of QCD) 



Evolution kernel for TMD’s
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Consistently the A.D. of the TMD is the opposite of the one of the hard coefficient

We evolve from one  M to another
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D-resummation

The perturbative  expansion of the D is valid when logs are small 

 Outside this region two strategies are proposed: 
1. D-resummation (Becher, Neubert, Wilhelm; G. Echevarría,Idilbi, Schaefer, S.)  
2. Scale fixing (CSS: Collins, Rogers; Qiu,Zhang; BLNY; Boer,Sun,Yuan..) 

Finally one gets to the pure non-perturbative part of D.  
       Is the NP part dominant?
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6 If the answer is yes  we are almost lost ..

µ ⇠ qT ⇠ 1/b

µ = 1/b; µ = 1/b⇤
µ = Q0 + qT



Construction of unpolarized TMDPDFs
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Take the asymptotic limit (High Q , qT) of each TMDPDF 

OPE to PDF, valid ONLY for qT>>

PDF

Process independent 
Non-perturbative correction⇤QCD

2-loop matching of PDFs deduced from the calculation of the 
cross section [Firenze (Catani et al.), Zurich (Gehrmann. et al)]. No direct 
application of the TMD formalism.
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This construction formally  recovers the perturbative limit.  
Status: This formula predicts that one 
TMDPDF matches onto a sum of PDFs. 
Currently all analysis of low energy 
data have fully exploited this up to first 
order
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Construction of unpolarized TMDPDFs
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Take the asymptotic limit (High Q , qT) of each TMDPDF 
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Scales and Theoretical errors: 

Q2 � q2T � ⇤2
QCD Perturbative regime: 3 scales ⇣, µ, µb

Q2 � q2T ⇠ ⇤2
QCD TMD regime: 2 scales ⇣, µ

Then µb = 2/(e2�b)

defines the  TMD scheme/model

de Florian, Catani, Ferrera, Grazzini, .. 
Chiu, Jain, Neill, Rothstein, Vaidya,..

“Mu-b Scale”



Construction of unpolarized 
TMDs

9

Take the asymptotic limit (High Q , qT) of each TMDPDF 

Exponentiation of part of the coefficient and complete resummation of the logs in the exponent 
(Kodaira, Trentadue 1982, Becher, Neubert Wilhelm 2011)

˜

Cq j(x,
~

b?, µ) ⌘ exp(h� � h�)
ˆ

Cq j(x,
~

b?, µ)

dh�

d lnµ

= �cuspL?

dh�

d lnµ

= �

V

h

R
� (b, µ) =

Z ↵s(µ)

↵s(1/b̂)
d↵

0�
F
cusp(↵

0
)

�(↵

0
)

Z ↵0

↵s(1/b̂)

d↵

�(↵)

.

finally write a(1/b) in terms of a(mu) and  fix mu=Qi. 
Logs are minimized with the choice  
                mu=Qi=Q0+qT

2-loop matching of PDFs: 
Florence (Catani et al.), Zurich ( Gehrmann. et al)

Same resummation as for the D
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Scale dependence:         bands on DY data
NLL-NNLL NLL-NNLL

NLL-NNLL NLL-NNLL NNLL

NLL

⇣, µ
Figures from: D’ Alesio, Echevarría,Melis, S.



Mu-b error on E288 data
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NLL
NNLL The matching on the PDF can 

be understood only as a model: 
the rapidity scale error is too big 
to allow a perturbative treatment. 
Higher twist? NNLL´/NNLO? See talk of S. Melis

Mu-b error on Z boson data
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For these data the matching is  
perturbatively under control at NNLL

Figures  done including the model of D’ Alesio, Echevarría,Melis,S.



The Higgs case
Figures from: Echevarría, Kasemets, Mulders,Pisano 
See also: Neill, Rothstein,Vaidya; 
Becher, Neubert, Wilhelm; 
Bozzi,Catani, de Florian, Grazzini…

Biggest error from mu-b scale

Gaussian model and µb = 1/ˆbT where

ˆbT = bc

q
1� exp[�b2T /b

2
c ]

Exponential model and µ = Q0 + qT



From NLL to NNLL…. to NNLL´/NNLO 

MSTW08 CTEQ10Improvement NLL->NNLL
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Higher perturbative orders allow to improve the convergence significantly!



Predictions for CMS
Pure-perturbative vs complete TMDs 

at NNLL

NLL vs NNLL  for complete TMDs: 
scale dependence

CMS goes at smaller values of Bjorken x  
than TeVatron: 

broader bands (See Belinsky et al. for small x resummation)

Very large bins!! (not shown)



Work in progress 
with U. D’ Alesio, M. Echevarría, S. Melis

Data analysis/fits: 
  
Full inclusion of  two loop results (NNLL’/NNLO) 

Scale dependences  

Improved non-perturbative  inputs for weak boson  
productions  

LHC results



TMDFF at NNLO
with M.G. Echevarría, A. Vladimirov. arXiv:1509.XXXX 



 TMDFF at NNLO
TMD formalism never been directly tested at 2-loops: 
All higher perturbative coefficients deduced from calculations of the product of 2 TMD’s  

We need (a regulator which allows) to calculate: 

The Universal Soft function (to be used for all spin 
dependent TMDs) 
The matching of the naive TMD’s onto the collinear 
functions. We provide the matching the unpolarized TMDFF onto FF.



TMD structures in SIDIS (EIS formulation)

W = H(Q/µ)
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The soft  factor contains only rapidity/collinear divergences



TMD structures in SIDIS (EIS formulation)

Each TMD is 

Rapidity divergences canceled within one TMD
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TMDFF structures (EIS formulation)



TMDFF expansion



TMDFF expansion
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Regularization



2-loop structure
Soft function is linear in the rapidity regulator



2-loop structure



2-loop structure: cancellation of 
divergences
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2-loop structure:recursion relations

The most general structure at order “n” which respects RGE
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Sample of the result
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Conclusions
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The correct measurement of non-perturbative effects in transverse momentum dependent 
observables requires the use  of TMDs on very different energy spectrum                                           

Golden energy range for TMDs, Q>2-3 GeV, qT<<Q. LHC, ee collider (Belle, Bes) and EIC can  provide  a  
huge development of the field 

The evolution of TMD’s should be used at highest available order to control the perturbative series 
(NNLL only achieved in a limited set of TMDs) 

The control of perturbative error (2-3 scales) is fundamental to understand the nature of non-
perturbative effects 

 The universality of TMDs requires the computation of TMDFF with the same degree of precision of 
TMDPDF:  

We have completed the calculation of the universal soft factor and the matching of the unpolarized 
non-singlet quark TMDFF onto FFs at NNLO using the EIS formulation: The result has passed all 
consistences check… to be full released soon 

 The soft function can be used for the  evaluation of the matching of all TMDs 

Thanks!!!



Back up slides
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Experimental Data
Z, run I: 

 Becher, Neubert, Wilhelm 2011:  
ad hoc model for these data at low qT 

Catani et al. 2009: Minimal Subtraction

Expected to be insensitive to Landau pole region 
Factorization hypothesis hold

Opportunity for ATLAS/CMS: unexplored measurement of DY
d�

dm``dqT dy
with 10 GeV ' m`` ' 70 GeV

Z, run I and low energy data 
BLNY-RESBOS: model for everything 
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 Results at NNLL: Z production
Z-boson data are (fairly) sensitive to  
functional non-perturbative  form  
(gaussian vs exponential) and  
(poorly) sensitive just  to      .  
In order to fix it  we need the global fit
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DYNNLO: Catani, Grazzini ’07, Catani, Cieri, Ferrera, de Florian, Grazzini ‘09

Message: 
One cannot fix the NP part of TMD’s  just looking at Z-boson production: 
Extrapolating parameters from Z to W may not be accurate enough.



Results at NNLL
Exp. Normalization 
NE288, NR209 
deduced from the fit.

Total: 4 parameters



Model dependence

Theoretical arguments suggest also a non-perturbative  
Q-dependence of the evolution kernel (check RESBOS). 
 We test

Non-perturbative  
inputs necessary  
for the  
peak region in 
Z-production: 
Consistency between  
 DY and Z data
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Model dependence No significative  
improvement: 

1-
Resummation 

in the 
evolution 

kernel greatly 
reduce TMD 

model 
dependence 

2- 
The bulk of 

non-
perturbative 

QCD 
corrections is 

scale 
independent

CTEQ10


