Interplay among transversity induced asymmetries in hadron leptoproduction (*)

Franco Bradamante

Trieste University and INFN

(*) C. Adolph et al. [COMPASS Collaboration] CERN-PH-EP/2015-199, hep-ex/1507.07593, sent for publication

interplay

between Collins and di-hadron asymmetries

known intriguing results

- Collins asymmetry for h⁺ and for h⁻ "mirror symmetry"
- di-hadron asymmetry
 only somewhat larger than h+ Collins

COMPASS

interplay

between Collins and di-hadron asymmetries

known intriguing results

- Collins asymmetry for h⁺ and for h⁻ "mirror symmetry"
- di-hadron asymmetry
 only somewhat larger than h+ Collins
- \rightarrow first studies of the correlations between the relevant azimuthal angles and the corresponding asymmetries $\phi_R \sim \phi_{2h}$

$$\phi_{2h} = \frac{1}{2} [\phi_1 + \phi_2 + sign(\Delta \phi) \cdot \pi]$$

COMPASS

hints for a common origin of the Collins FF and Di-hFF

Como 2013, DSpin2013, SPIN 2014, CERN-PH-EP/2015-199 → PRL

three issues

1. Dependence of the COLLINS ASYMMETRY on the detection of other hadrons in the jet

$$\mu$$
 p \rightarrow μ ' h⁺ X h⁺ Collins asymmetry μ p \rightarrow μ ' h⁺ h⁻ X h⁺ Collins-Like asymmetry

- 2. In the process μ p \rightarrow μ' h⁺ h⁻ X investigate the correlations between the h⁺ and h⁻ CL asymmetries as a function of $\Delta \phi = \phi_1 \phi_2$
- 3. In the process μ p \rightarrow μ ' h⁺ h⁻ X investigate the correlation between the CL asymmetries and the 2h asymmetry

1. comparison of Collins and CL asymmetries

2. correlations between the h⁺ and h⁻ CL asymmetries

Collins Like asymmetries vs $\Delta \phi = \phi_1 - \phi_2$

the asymmetries are expected to be specular and maximum at $\Delta \phi \simeq \pi$ confirmed by data

2. correlations between the h⁺ and h⁻ CL asymmetries

Collins Like asymmetries vs $\Delta \phi = \phi_1 - \phi_2$

the asymmetries are expected to be specular and maximum at $\Delta \phi \simeq \pi$ confirmed by data

analytical calculations:

A. Kotzionian, PRD91 2015

$$\frac{d\sigma^{h_1h_2}}{d\phi_1 d\phi_2 d\phi_S} = \sigma_U^{h_1h_2} + S_T \left[\sigma_{C1}^{h_1h_2} \sin(\phi_1 + \phi_S - \pi) + \sigma_{C2}^{h_1h_2} \sin(\phi_2 + \phi_S - \pi) \right] + \sigma_{C2}^{h_1h_2} \sin(\phi_2 + \phi_S - \pi)$$

$$A_{CL1}^{\sin(\phi_1 + \phi_S - \pi)} = \frac{1}{D_{NN}} \frac{\sigma_{C1}^{h_1h_2} + \sigma_{C2}^{h_1h_2} \cos \Delta \phi}{\sigma_U^{h_1h_2}}$$

$$A_{CL2}^{\sin(\phi_2 + \phi_S - \pi)} = \frac{1}{D_{NN}} \frac{\sigma_{C2}^{h_1h_2} + \sigma_{C1}^{h_1h_2} \cos \Delta \phi}{\sigma_U^{h_1h_2}}$$

good agreement with data if

$$\sigma_{C1}^{h_1 h_2} = -\sigma_{C2}^{h_1 h_2}$$

→ mirror symmetry

$$A_{CL2}^{\sin(\phi_2+\phi_S-\pi)} = -A_{CL1}^{\sin(\phi_1+\phi_S-\pi)}$$

2. correlations between the h⁺ and h⁻ CL asymmetries

Mirror symmetry is just what one expects from the

string fragmentation model + pairs created in ³P₀ state

Indeed
$$\sigma_{C1}^{h_1h_2}=-\sigma_{C2}^{h_1h_2}$$

means that at every break of the string the quark flips its spin

3. correlation between CL and di-hadron asymmetries

$$\sigma_{C1}^{h_1 h_2} = -\sigma_{C2}^{h_1 h_2}$$

rewriting the cross-section in terms of ϕ_{2h} and $\,\Delta\phi\,$ one easily obtains

$$A_{2h,CL}^{\sin(\phi_{2h}+\phi_S-\pi)} = \frac{1}{D_{NN}} \frac{\sigma_{C1}^{h_1 h_2}}{\sigma_{U}^{h_1 h_2}} \cdot \sqrt{2(1-\cos\Delta\phi)}$$

a very **simple relationship** between di-hadron and single hadron asymmetries in the 2h sample

in agreement with data

ratio of the integrals: $4/\pi$ "slightly larger than h^+ "

3. correlation between CL and di-hadron asymmetries

$$\sigma_{C1}^{h_1 h_2} = -\sigma_{C2}^{h_1 h_2}$$

rewriting the cross-section in terms of ϕ_{2h} and $\,\Delta\phi\,$ one easily obtains

$$A_{2h,CL}^{\sin(\phi_{2h}+\phi_S-\pi)} = \frac{1}{D_{NN}} \frac{\sigma_{C1}^{h_1 h_2}}{\sigma_{U}^{h_1 h_2}} \cdot \sqrt{2(1-\cos\Delta\phi)}$$

a very **simple relationship** between di-hadron and single hadron asymmetries in the 2h sample

- the analysis of COMPASS data continues:
 results from complementary studies of the 2h asymmetries in a
 short time
 some results for Sivers already released
- it would be interesting to perform the corresponding studies in e⁺e⁻

