Short communication: Sivers asymmetry of the J/ ψ in COMPASS 2010 proton data

Jan Matoušek

TMDe2015, Trieste, Italy

Jan Matoušek

Sivers asymmetry of the J/ψ

Goal:

Sivers asymmetry in J/ψ production in scattering of μ off transversely polarized p

$$\mu^+ + p^\uparrow \to \mu^+ + J/\psi + X$$

- J/ ψ identified from decay to muons... $2\mu^+ + 1\mu^- + X$ in the final state.
- Rare process... impossible to do fine binning.
- Just 2 bins in $z \stackrel{\text{lab}}{=} \frac{E_{J/\psi}}{E-E'}$ to distinguish inclusive and exclusive production.

- 3

《曰》 《圖》 《圖》 《圖》

Goal:

Sivers asymmetry in J/ ψ production in scattering of μ off transversely polarized p

$$\mu^+ + p^\uparrow \to \mu^+ + J/\psi + X$$

- J/ ψ identified from decay to muons... $2\mu^+ + 1\mu^- + X$ in the final state.
- Rare process... impossible to do fine binning.
- Just 2 bins in $z \stackrel{\text{lab}}{=} \frac{E_{J/\psi}}{E-E'}$ to distinguish inclusive and exclusive production.

Goal:

Sivers asymmetry in J/ ψ production in scattering of μ off transversely polarized p

$$\mu^+ + p^\uparrow \to \mu^+ + J/\psi + X$$

- J/ ψ identified from decay to muons... $2\mu^+ + 1\mu^- + X$ in the final state.
- Rare process... impossible to do fine binning.
- Just 2 bins in $z \stackrel{\text{lab}}{=} \frac{E_{J/\psi}}{E-E'}$ to distinguish inclusive and exclusive production.

Goal:

Sivers asymmetry in J/ψ production in scattering of μ off transversely polarized p

$$\mu^+ + p^\uparrow \to \mu^+ + J/\psi + X$$

- J/ ψ identified from decay to muons... $2\mu^+ + 1\mu^- + X$ in the final state.
- Rare process... impossible to do fine binning.
- Just 2 bins in $z \stackrel{\text{lab}}{=} \frac{E_{J/\psi}}{E-E'}$ to distinguish inclusive and exclusive production.

Left: The variable z with indicated boundaries of the two bins. Right: The missing energy $E_{\text{miss}} \stackrel{\text{lab}}{=} E - E' - E_{\text{J}/\psi} + \frac{t}{2M_p}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

R. M. Godbole *et al.*: PRD 85, 094013 (2012) and PRD 88, 014029 (2013)¹:

- Color evaporation model:
 - The LO subprocess: $\gamma + g \rightarrow c + \bar{c}$.
 - formation of J/ψ —soft process, statistic treatment of color states.
- J/ψ production could give access to gluon Sivers function.
- Under a lot of assumptions estimate of the asymmetry for approx. COMPASS case² between 0.03 and 0.18.

¹http://arxiv.org/abs/1201.1066, http://arxiv.org/abs/1304.2584

Jan Matoušek

Sivers asymmetry of the J/ψ

TMDe2015, Trieste, Italy 3 / 7

- R. M. Godbole *et al.*: PRD 85, 094013 (2012) and PRD 88, 014029 (2013)¹:
 - Color evaporation model:
 - The LO subprocess: $\gamma + g \rightarrow c + \bar{c}$.
 - formation of J/ ψ —soft process, statistic treatment of color states.
 - J/ψ production could give access to gluon Sivers function.
 - Under a lot of assumptions estimate of the asymmetry for approx. COMPASS case² between 0.03 and 0.18.

¹http://arxiv.org/abs/1201.1066, http://arxiv.org/abs/1304.2584

Jan Matoušek

Sivers asymmetry of the ${\rm J}/\psi$

- R. M. Godbole *et al.*: PRD 85, 094013 (2012) and PRD 88, 014029 (2013)¹:
 - Color evaporation model:
 - The LO subprocess: $\gamma + g \rightarrow c + \bar{c}$.
 - formation of J/ ψ —soft process, statistic treatment of color states.
 - J/ ψ production could give access to gluon Sivers function.
 - Under a lot of assumptions estimate of the asymmetry for approx. COMPASS case² between 0.03 and 0.18.

¹http://arxiv.org/abs/1201.1066, http://arxiv.org/abs/1304.2584

Jan Matoušek

Sivers asymmetry of the ${\rm J}/\psi$

R. M. Godbole *et al.*: PRD 85, 094013 (2012) and PRD 88, 014029 (2013)¹:

- Color evaporation model:
 - The LO subprocess: $\gamma + g \rightarrow c + \bar{c}$.
 - formation of J/ ψ —soft process, statistic treatment of color states.
- J/ψ production could give access to gluon Sivers function.
- Under a lot of assumptions estimate of the asymmetry for approx. COMPASS case² between 0.03 and 0.18.

Fig. 3 COMPASS energy ($\sqrt{s} = 17.33$ GeV), Asymmetry as a function of y (left panel) and q_T (right panel). The integration ranges are $(0 \le q_T \le 1)$ GeV and $(-1.5 \le y \le 1.5)$ G.

(William Weizsaker approximation, k_{\perp} dependence in gaussian form, *x*-dependent normalization of the *d* quark are used; http://arxiv.org/abs/1411.3893)

¹ http://arxiv.org/abs/1201.	1066, http://arxiv.org/abs/130	4.25	584						
$\sqrt{s} = 17.33 \text{ GeV}, p_T \text{ integral}$	ated from 0 to 1 GeV.	• •	•	• 7	► • ₹	►	★厘≯	1	うくで
Jan Matoušek	Sivers asymmetry of the J/ψ			TMD	e2015	, т	rieste, It	taly	3 / 7

Dimuon invariant mass in the 2 z-bins.

- Signal band (in red): 8026 events in total.
- 2 side-bands (in green) for background asymmetry measurement.
- The red fit is the normal distribution plus exponential background.

$$AN(M_{\mu\mu},\mu,\sigma) + BM^C_{\mu\mu}$$

• From the fit: 6 600 J/ ψ events in total (2 211 inclusive, 4 448 exclusive).

Jan Matoušek

Sivers asymmetry of the J/ψ

TMDe2015, Trieste, Italy

Dimuon invariant mass in the 2 z-bins.

- Signal band (in red): 8026 events in total.
- 2 side-bands (in green) for background asymmetry measurement.
- The red fit is the normal distribution plus exponential background.

$$AN(M_{\mu\mu},\mu,\sigma) + BM^{C}_{\mu\mu}$$

• From the fit: 6 600 J/ ψ events in total (2 211 inclusive, 4 448 exclusive).

Jan Matoušek

Sivers asymmetry of the J/ψ

TMDe2015, Trieste, Italy 4 / 7

Dimuon invariant mass in the 2 z-bins.

- Signal band (in red): 8026 events in total.
- 2 side-bands (in green) for background asymmetry measurement.
- The red fit is the normal distribution plus exponential background.

$$AN(M_{\mu\mu},\mu,\sigma) + BM_{\mu\mu}^C$$

• From the fit: 6 600 J/ ψ events in total (2 211 inclusive, 4 448 exclusive).

Jan Matoušek

Sivers asymmetry of the J/ψ

TMDe2015, Trieste, Italy

Dimuon invariant mass in the 2 z-bins.

- Signal band (in red): 8026 events in total.
- 2 side-bands (in green) for background asymmetry measurement.
- The red fit is the normal distribution plus exponential background.

$$AN(M_{\mu\mu},\mu,\sigma) + BM^C_{\mu\mu}$$

• From the fit: 6 600 J/ ψ events in total (2 211 inclusive, 4 448 exclusive).

Jan Matoušek

Dimuon invariant mass in the 2 z-bins.

- Signal band (in red): 8026 events in total.
- 2 side-bands (in green) for background asymmetry measurement.
- The red fit is the normal distribution plus exponential background.

$$AN(M_{\mu\mu},\mu,\sigma) + BM^C_{\mu\mu}$$

• From the fit: 6 600 J/ ψ events in total (2 211 inclusive, 4 448 exclusive).

Left: Bjorken x distribution. Right: Bjorken x wrt. Q^2 .

- The blue line—all J/ψ events,
- the other two—the two bins in z.

• Low x and Q^2 .

Jan Matoušek

Left: Bjorken x distribution. Right: Bjorken x wrt. Q^2 .

- The blue line—all J/ψ events,
- the other two—the two bins in z.
- Low x and Q^2 .

Jan Matoušek

(日) (周) (日) (日)

${\rm J}/\psi$ rapidity and x-gluon

Left: The rapidity of the J/ψ in μp CMS Right: x-gluon (from the rapidity).

• Formula from R. M. Godbole *et al.*: PRD 85, 094013 (2012): $x_g = \frac{M_J/\psi}{\sqrt{s}} e^{y_R}$. • x_g rather high to our taste...

${\rm J}/\psi$ rapidity and x-gluon

Left: The rapidity of the J/ψ in μp CMS Right: x-gluon (from the rapidity).

• Formula from R. M. Godbole *et al.*: PRD 85, 094013 (2012): $x_g = \frac{M_{J/\psi}}{\sqrt{s}} e^{y_R}$. • x_g rather high to our taste...

${\rm J}/\psi$ rapidity and x-gluon

Left: The rapidity of the J/ψ in μp CMS Right: x-gluon (from the rapidity).

- Formula from R. M. Godbole *et al.*: PRD 85, 094013 (2012): $x_g = \frac{M_{J/\psi}}{\sqrt{s}} e^{y_R}$.
- x_g rather high to our taste...

• The process of interest is rare (2 211 inclusive, 4 448 exclusive J/ψ from 2010).

- The relative uncertainty is too large to give a hint for the theory.
- A_{Siv} found compatible with 0 (details in Dubna on DSPIN-2015).
- Room for possible improvement:
 - "New production"... max. 10% events more.
 - All COMPASS transverse data (p + d)... better, but still not an order of magnitude in the error...

Thank you for your attention!

- The process of interest is rare (2 211 inclusive, 4 448 exclusive J/ ψ from 2010).
- The relative uncertainty is too large to give a hint for the theory.
- A_{Siv} found compatible with 0 (details in Dubna on DSPIN-2015).
- Room for possible improvement:
 - "New production"... max. 10% events more.
 - All COMPASS transverse data (p + d)... better, but still not an order of magnitude in the error...

Thank you for your attention!

- The process of interest is rare (2 211 inclusive, 4 448 exclusive J/ ψ from 2010).
- The relative uncertainty is too large to give a hint for the theory.
- A_{Siv} found compatible with 0 (details in Dubna on DSPIN-2015).
- Room for possible improvement:
 - "New production"... max. 10% events more.
 - All COMPASS transverse data (p + d)... better, but still not an order of magnitude in the error...

Thank you for your attention!

7 / 7

- The process of interest is rare (2 211 inclusive, 4 448 exclusive J/ ψ from 2010).
- The relative uncertainty is too large to give a hint for the theory.
- A_{Siv} found compatible with 0 (details in Dubna on DSPIN-2015).
- Room for possible improvement:
 - "New production"... max. 10% events more.
 - All COMPASS transverse data (p + d)... better, but still not an order of magnitude in the error...

Thank you for your attention!

イロト イヨト イヨト イヨト

- The process of interest is rare (2 211 inclusive, 4 448 exclusive J/ ψ from 2010).
- The relative uncertainty is too large to give a hint for the theory.
- A_{Siv} found compatible with 0 (details in Dubna on DSPIN-2015).
- Room for possible improvement:
 - "New production"... max. 10% events more.
 - All COMPASS transverse data (p + d)... better, but still not an order of magnitude in the error...

Thank you for your attention!

イロト イヨト イヨト イヨト