International Symposium on Very High Energy Particle Astronomy - New Approach to PeV-EeV Universe -

Latest Results and Upgrade of Auger Observatory **AUGER**

Karl-Heinz Kampert University Wuppertal

BERGISCHE UNIVERSITÄT WUPPERTAL

Taipei (Taiwan), April 8-9, 2015

Pierre Auger Observatory

 $.05$

Minas El Sosr

CLF

 \mathcal{L} and \mathcal{L}

XLF

3000 km²

OS Ortíz

Pampa

 ϵ

140

 10^{10R}_{212}

Los

Morados

El Sa tral-Pto

Virgen del Carmen

 $tral-Pto.$ ^O

2

Cent

Malargüe Camp.

Los Leones

BLS

~65 km

Coine and Coine

HEAT

1660 detector stations on 1.5 km grid

27 fluores. telescopes at periphery

130 radio antennas

Karles And Heinzeld - University of the U **Province Mendoza, Argentina**

Auger Hybrid Observatory

3000 km2 area, Argentina 27 fluorescence telescopes plus ...1660 Water Cherenkov tanks

VHEPA, Taipei (Taiwan), April 8-9, 2015

A New Generation: Hybrid Observation of EAS

Concept pioneered by the Pierre Auger Collaboration (Fully operational since 06/2008 (Concept now also used by

 Telescope Array (TA))

light trace at night-sky *(calorimetric)*

Fluorescence light

Particle-density and -composition at ground

Karl-Heinz Kampert - Univ. Wuppertal *Also: Detection of Radio- & Microwave-Signals*

Pierre Auger Collaboration

~500 Collaborators; 88 Institutions, 17 Countries:

Germany

Italy

Mexico

Netherlands

Outline

1. Brief Overview of Recent Results

- energy spectrum • neutrinos
- mass composition particle & fundamental physics
- anisotropies
- photons

• interdisciplinary science, ...

2. Puzzles to be solved; Rational of Upgrade

- transition galactic to extragalactic CRs
- origin of the flux suppression
- proton astronomy at the highest energies
- features of hadronic interaction @ \sqrt{s} ~100 TeV

3. Cost Estimate, Timeline

Event Example in Auger Observatory

Event Example in Auger Observatory

All Particle Energy Spectrum

Good agreement between experiments - some differences at the highest energies -

Auger Combined E-Spectrum (0°-80°)

Data compared to GZK-effect

Limiting Energy of Sources (Emax~Z) + GZK

Longitudinal Shower Development ➙ **Primary Mass**

KHK, Unger, APP 35 (2012) EPOS 1.99 Simulations

Decomposition of Xmax-Distributions

Auger collaboration, Phys. Rev. D 90, 122006 (2014)

Interaction Models lack Muons in EAS

Auger Collaboration, Phys. Rev. D 91, 032003 (2015); editors suggestion

µ-deficit points to deficiencies of hadronic interaction models LHC forward physics program highly relevant joint efforts by people from both communities

Auger - TA Comparison

Joint Working Group (UHECR2014; arXiv:1503.07540)

Karl-Heir

"Two data sets are in excellent agreement, even without accounting for the respective systematic uncertainties on the Xmax scale."

…and surely both TA and Auger agree on seeing a p (He) dominated composition in the ankle range

Large Scale Anisotropies

17

Large Scale Anisotropies

18

Search for EeV γ-point sources

Fig. 10.000, 00.1110 Calabas 10.130 urces e km2*·*yr ⁱ illustrated in Galactic in
The Contractic in Galactic Energy flux of 0.25 eV/cm²s would yield a 5 σ excess (assuming E^{-2} spectr.) Note, some Galactic TeV sources exceed I eV/cm²s !

 \Rightarrow Galactic TeV y-sources don't stick out to EeV energies

Search for EeV neutron-point sources

Energy flux of neutrons $F_n < 0.083$ eV/cm²s (assuming E⁻² spectr.) None of HESS source candidates shows any significance of n-emission!

 \sim Calactic TaV μ courses don't stight $f \rightarrow$ Galactic ICV γ -soul CCS GOII C stick \Rightarrow Galactic TeV γ-sources don't stick out to EeV energies The blind search for a flux of neutral particles using the August of neutral particles using the August of The
The August of the August of

UHECR Sky surprisingly isotropic 1018 1019 1020 **PERSON**

Weak excess of events around Cen A

Feain et al., ApJ 740 (2011) 17

Point Source Searches few cosmic ray sources with a light composition at the highest energies. If the actual source distribution were anisotropic, these results could be understood for instance as due

Conclusions from CR Anisotropy Studies

1) Absence of significant correlations to Galactic Center and Galactic Plane ➪ **10 EeV sources are unlikely of Galactic origin**

2) Only small deviation from overall isotropic sky

- ➪ **either large deflections by B-fields, e.g. due to heavy primaries** (supported by Auger composition studies)
- ➪ **or number of sources is very large** (bounds by Auger from lack of autocorrelations: $\rho \approx 10^{-4}$ Mpc⁻³)

A look to the PeV Neutrino Sky

cross correlations to catalogs ➾ **no signal yet cross correlations to UHECR (Auger+TA)** ➾ **ongoing**

Constraints from Neutrino-Isotropy

High level of Isotropy \Rightarrow source density must be fairly high Integral Flux $F = p \cdot L$ is known \Rightarrow Mean Luminosity per source must be low

…Back to the GZK-Question: – smoking gun signals by EeV ν's and γ's –

detect?on+on:+++UHECR+nature+(p,+mixed,+Fe),+origin+(evolutio+(evolutio+the+sources,+Fe),+origin+(evolutio+the+

27 VHEPA, Taipei (Taiwan), April 8-9, 2015

GZK photons get constrained as well

Update from: Astropart. Phys. 31 (2009) 399; ICRC2015

Photon upper limits rule out Top-Down Models and start to constrain GZK-expectations

Include the Ealth Nautrine in inclined showers **Search for EeV Neutrinos**

- Protons & nuclei initiate showers high in the atmosphere.
	- Shower front at ground:
		- mainly composed of muons
		- electromagnetic component absorbed in atmosphere.
- Neutrinos can initiate "deep" showers close to ground.
	- Shower front at ground: electromagnetic + muonic components+

Searching for neutrinos \Rightarrow searching for inclined showers with electromagnetic component

Sensitivity to all *v* **flavors and channels**

Identifying νs in surface detector data entifying vs in surface detector da

With the SD, we can distinguish muonic from electromagnetic shower fronts (using the time structure of the signals in the water Cherenkov stations).

Identifying *vs* **in surface detector data**

From the observational point of view, signals extended in time:

Induce Time-over-Threshold (ToT) triggers in the SD stations

 and/or

Have large Area-over-Peak

Definition of Area-over-Peak (AoP)

Searching for neutrinos \Rightarrow Searching for inclined showers with stations with ToT triggers and/or large AoP

Selection of inclined showers: Selection and the inclined term in the control of the inclined state of the inclined state of the inclined state of oi inclined

AoP in Earth Skimming Sample

AoP: Area over peak

Combined Fisher Discriminant

PeV ν-fluxes and EeV ν-limits

Timo Karg for IceCube, Auger, TA Collaborations; UHECR2014

Upper Limits on Neutrinos

-5 10 Neutrino upper limits start to constrain cosmogenic neutrino fluxes of p-sources

Auger (this work)

Upper Limits on Neutrinos eventi e la provincia di provincia di un originale di un originale di un originale di un originale di un origi LIMITS ON NEUTHNOS

Neutrino upper limits start still above \mathbf{d} and die division of \mathbf{d} use flux of \mathbf{d} Equitories of the Pierre August Observators Constitution and Constitution of the Pierre August 2014 cosmogenic neutrino fluxes for Fe-sources

inator of Eq. (2) can also be integrated in bins of energy,

Major Achievements in the first 7 years of operation

- Clear observation of flux suppression
- Strongest existing bounds on EeV v and γ
- Strongest existing bounds on large scale anisotropies
- First hints on directional correlations to nearby matter
- Increasingly heavier composition above ankle
- pp cross section at ~10*E_{LHC}, LIV-bounds, ...
- muon deficit in models at highest energies
- geophysics (elfes, solar physics, aerosols...)

Science Goals of Auger Upgrade

1. Elucidate the origin of the flux suppression, i.e. GZK vs. maximum energy scenario

- fundamental constraints on UHECR sources
- galactic vs extragalactic origin
- reliable prediction of GZK ν- and -γ fluxes

2. Search for a flux contribution of protons up to the highest energies at a level of ~ 10%

- proton astronomy up to highest energies
- prospects of future UHECR experiments

3. Study of extensive air showers and hadronic multiparticle production above √s=70 TeV

- particle physics beyond man-made accelerators
- derivation of constraints on new physics phenomena

Answering the science questions requires composition sensitivity event-by-event into the flux suppression region

Up to know, composition based solely on Fluorescence Telescopes, duty cycle ~10-15% *(different operation modus planned to yield factor ~2)*

- ➙ most effectively achieved by upgrade of surface detectors (duty cycle 100%)
- \rightarrow immediate boost in statistics by a factor of \sim 10 !

classical approach: **enhance electromagnetic/muonic separation of stations** (and time resolution)

N^µmax vs Xmax

How to Improve e/µ discrimination?

Letessier-Selvon et al., NIM A767 (2014) 41

$$
S_{\text{top}} = a_{\text{top},\gamma} \cdot N_{\gamma} + a_{\text{top},\mu} \cdot N_{\mu}
$$

$$
S_{\text{bot}} = a_{\text{bot},\gamma} \cdot N_{\gamma} + a_{\text{bot},\mu} \cdot N_{\mu}
$$

4 LSD time $[8]$ ns] -400 -350 -300 -250 -200 -150 -100 Signal [VEM peak] 0 2 4 6 8 $10 \div$ 12 14 16 18 μ^{\pm} rec $-\mu^2$ true time [8 ns] time $\left[\overline{8} \text{ ns}\right]$ -400 -350 -300 -250 -200 -150 -100 Signal [VEM peak] 0 2 4 6 8 10 12 14 16 18 20 22 $e^{\pm} \gamma$ rec $-e^{\pm} \gamma$ true $\begin{array}{c} \mathcal{L} \setminus \mathcal{L}$ (middle); example of a multi-component reconstruction of the LDF (right). $N_Y(t)$ $N_{\text{U}}(t)$

Linear system of equations:

$$
\begin{pmatrix}\nS_{\text{top}} \\
S_{\text{bot}}\n\end{pmatrix} = \begin{pmatrix}\na_{\text{top},\gamma} & a_{\text{top},\mu} \\
a_{\text{bot},\gamma} & a_{\text{top},\mu}\n\end{pmatrix}\n\begin{pmatrix}\nN_{\gamma} \\
N_{\mu}\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\nN_{\gamma} \\
N_{\mu}\n\end{pmatrix} = \begin{pmatrix}\na_{\text{top},\gamma} & a_{\text{top},\mu} \\
a_{\text{bot},\gamma} & a_{\text{top},\mu}\n\end{pmatrix}^{-1}\n\begin{pmatrix}\nS_{\text{top}} \\
S_{\text{bot}}\n\end{pmatrix}
$$

 $\rm ot.$ \mathcal{L}

 $\sum_{i=1}^{\infty} \frac{1}{i}$ and $\sum_{i=1}^{\infty}$ and $\sum_{i=1}^{\infty}$ and $\sum_{i=1}^{\infty}$ and $\sum_{i=1}^{\infty}$ from detector Monte Carlo \sim \sim \sim \pm $\frac{1}{2} \sum_{i=1}^{N_E} \frac{1}{i} \frac{1}{i} \frac{1}{i}$ $\frac{1}{N_E}$ \frac primary energy and mass)

Performance of Scintillator+WCD

May be able to use matrix inversion technique, similar to LSD:

Matrix parameters were derived for both proton and iron primaries by using the simulated showers in *Set*

$$
\begin{pmatrix}\nS_{\text{Scin}} \\
S_{\text{WCD}}\n\end{pmatrix} = \begin{pmatrix}\n0.54 & 0.3 \\
0.46 & 0.7\n\end{pmatrix} \begin{pmatrix}\nS_{\text{em}} \\
S_{\mu}\n\end{pmatrix} \quad b \simeq \frac{A_{\text{Scint}}}{A_{\text{Scint}} + A_{\text{WCD}}} = 4/14 \simeq 0.29
$$

Matrix independent from primary, here:

Comparison of proton and iron primaries; ±1%

Event-by-Event resolution of µ-ratio $\sim 20\%$

4 m2 ASCII prototype

Some Prototype Results

Karl-Heinz Kampert - Univ. Wuppertal

Prototype experiences accompanied by detailed performance estimates

CORSIKA Shower libraries were generated with different

70

60

50

40

30

20

10

 Ω

 -410

- energies (fixed and continuous)
- primaries
- zenith angles
- interaction models
- performance then studied
- per station and
- per event

Note: enhanced SD helps also improving photons and neutrino detection

Discriminant [a.u.]

Power of Composition Enhanced Astronomy

assume present statistics: $N=146$ events (E>57 EeV), $P_{iso}=0.21$ and study correlation significance when protons correlate, but Fe does not

white lines: contour levels at sigma $= 1, 2, 3, ...$

Power of Composition Enhanced Astronomy

ay correlation significance when protons co assume present statistics: N=146 events (E>57 EeV), Piso=0.21 and study correlation significance when protons correlate, but Fe does not Add 20% isotropic background: catalog incompleteness, distant sources, ...

white lines: contour levels at sigma $= 1, 2, 3, ...$

Conclusions

Enhancing the surface detector array for better em/mu separation will boost the science of Auger

- \rightarrow factor of \sim 10 in statistics for composition measurements
- \rightarrow GZK vs maximum energy
- ➙ allow p-astronomy (composition enhanced anisotropy)
- ➙ learn about global features of hadronic interactions at \sqrt{s} > 70 TeV
- ➙ decisive prediction of UHE (cosmogenic) ν-fluxes
- **→ decisive for next generation UHECR Experiments**

Auger is well in place to address these questions for the next decade