International Symposium on Very High Energy Particle Astronomy - New Approach to PeV-EeV Universe -

Latest Results and Upgrade of Auger Observatory

Karl-Heinz Kampert University Wuppertal

BERGISCHE UNIVERSITÄT WUPPERTAL

Taipei (Taiwan), April 8-9, 2015

Photo by Steven Saffi

Pierre Auger Observatory

Pampa

Ortíz

Province Mendoza, Argentina

OS

Minas El Sosr

Cen

Malargue Camp

Ex For

Kar

1660 detector stations on 1.5 km grid

40

10212

10

El Sa tral-Pto

Virgen del Carmen

al-Pto 0

abras

27 fluores. telescopes at periphery

130 radio antennas

IEPA, Taipei (Taiwan), April 8-9, 2015

Auger Hybrid Observatory

3000 km² area, Argentina 27 fluorescence telescopes plus ...1660 Water Cherenkov tanks

VHEPA, Taipei (Taiwan), April 8-9, 2015

A New Generation: Hybrid Observation of EAS

Concept pioneered by the Pierre Anger Collaboration (Fully operational since 06/2008 (Concept now also used by

Telescope Array (TA))

light trace at night-sky (calorimetric)

Fluorescence light

Particle-density and -composition at ground

Also: Detection of Radio- & Microwave-Signals Karl-Heinz Kampert - Univ. Wuppertal

Pierre Auger Collaboration

~500 Collaborators; 88 Institutions, 17 Countries:

Argentina	Poland	UK	
Australia	Portugal	USA	
Brazil	Romania		PIERRE AUGER OBSERVATORY
Czech Republic	Slovenia	Colombia*	
France	Spain	New members are welcome!	
		*Associated	

Germany Italy Mexico Netherlands

Outline

I. Brief Overview of Recent Results

- energy spectrum
 neutrinos
- mass composition
 particle & fundamental physics
- anisotropies
- photons

• interdisciplinary science, ...

2. Puzzles to be solved; Rational of Upgrade

- transition galactic to extragalactic CRs
- origin of the flux suppression
- proton astronomy at the highest energies
- features of hadronic interaction @ $\sqrt{s \sim 100 \text{ TeV}}$

3. Cost Estimate, Timeline

Karl-Heinz Kampert - Univ. Wuppertal

Event Example in Auger Observatory

Event Example in Auger Observatory

Karl-Heinz Kampert - Univ. Wuppertal

All Particle Energy Spectrum

Good agreement between experiments some differences at the highest energies -

Auger Combined E-Spectrum (0°-80°)

Karl-Heinz Kampert - Univ. Wuppertal

Data compared to GZK-effect

Limiting Energy of Sources (E_{max}~Z) + GZK

Longitudinal Shower Development → Primary Mass

KHK, Unger, APP 35 (2012) EPOS 1.99 Simulations

Decomposition of Xmax-Distributions

Auger collaboration, Phys. Rev. D 90, 122006 (2014)

Interaction Models lack Muons in EAS

Auger Collaboration, Phys. Rev. D 91, 032003 (2015); editors suggestion

µ-deficit points to deficiencies of hadronic interaction models LHC forward physics program highly relevant joint efforts by people from both communities

Auger - TA Comparison

Joint Working Group (UHECR2014; arXiv:1503.07540)

Karl-Heir

"Two data sets are in excellent agreement, even without accounting for the respective systematic uncertainties on the X_{max} scale."

...and surely both TA and Auger agree on seeing a p (He) dominated composition in the ankle range

16

Large Scale Anisotropies

expectations from stationary galactic sources distributed in the disk

light CR component seen at 10¹⁸ eV cannot originate from stationary sources in the galactic disk

Large Scale Anisotropies

Karl-Heinz Kampert - Univ. Wuppertal

Search for EeV γ -point sources

energy flux of 0.25 eV/cm²s would yield a 50 excess (assuming E⁻² spection Note, some Galactic TeV sources exceed 1 eV/cm²s !

 \Rightarrow Galactic TeV γ -sources don't stick out to EeV energies

Search for EeV neutron-point sources

Energy flux of neutrons $F_n < 0.083 \text{ eV/cm}^2 s$ (assuming E^{-2} spectr.) None of HESS source candidates shows any significance of n-emission!

 \Rightarrow Galactic TeV γ -sources don't stick out to EeV energies

UHECR Sky surprisingly isotropic

Weak excess of events around Cen A

Feain et al., ApJ 740 (2011) 17

Point Source Searches

Conclusions from CR Anisotropy Studies

1) Absence of significant correlations to Galactic Center and Galactic Plane 10 EeV sources are unlikely of Galactic origin

2) Only small deviation from overall isotropic sky

- either large deflections by B-fields, e.g. due to heavy primaries (supported by Auger composition studies)
- ⇒ or number of sources is very large (bounds by Auger from lack of autocorrelations: $\rho \ge 10^{-4}$ Mpc⁻³)

A look to the PeV Neutrino Sky

cross correlations to catalogs ⇒ no signal yet cross correlations to UHECR (Auger+TA) ⇒ ongoing

Constraints from Neutrino-Isotropy

High level of Isotropy \Rightarrow source density must be fairly high Integral Flux F=p·L is known \Rightarrow Mean Luminosity per source must be low

...Back to the GZK-Question: – smoking gun signals by EeV v's and γ 's –

Karl-Heinz Kampert - Univ. Wuppertal

GZK photons get constrained as well

Update from: Astropart. Phys. 31 (2009) 399; ICRC2015

Photon upper limits rule out Top-Down Models and start to constrain GZK-expectations

Search for EeV Neutrinos in inclined showers

- Protons & nuclei initiate showers high in the atmosphere.
 - Shower front at ground:
 - mainly composed of muons
 - electromagnetic component absorbed in atmosphere.
- Neutrinos can initiate "deep" showers close to ground.
 - Shower front at ground:
 electromagnetic + muonic
 components

Searching for neutrinos ⇒ searching for inclined showers with electromagnetic component

Sensitivity to all v flavors and channels

Identifying vs in surface detector data

With the SD, we can distinguish muonic from electromagnetic shower fronts (using the time structure of the signals in the water Cherenkov stations).

Identifying vs in surface detector data

From the observational point of view, <u>signals extended in time</u>:

 Induce <u>Time-over-Threshold</u> (ToT) triggers in the SD stations

and/or

Have large Area-over-Peak

value (AoP \sim 1 muonic front)

Definition of Area-over-Peak (AoP)

Searching for neutrinos ⇒ Searching for inclined showers with stations with ToT triggers and/or large AoP

Selection of inclined showers:

AoP in Earth Skimming Sample

AoP: Area over peak

Combined Fisher Discriminant

PeV v-fluxes and EeV v-limits

Timo Karg for IceCube, Auger, TA Collaborations; UHECR2014

Upper Limits on Neutrinos

Neutrino upper limits start to constrain cosmogenic neutrino fluxes of p-sources

Upper Limits on Neutrinos

Neutrino upper limits start still above cosmogenic neutrino fluxes for Fe-sources

Major Achievements in the first 7 years of operation

- Clear observation of flux suppression
- Strongest existing bounds on EeV ν and γ
- Strongest existing bounds on large scale anisotropies
- First hints on directional correlations to nearby matter
- Increasingly heavier composition above ankle
- pp cross section at ~10*ELHC, LIV-bounds, ...
- muon deficit in models at highest energies
- geophysics (elfes, solar physics, aerosols...)

Science Goals of Auger Upgrade

1. Elucidate the origin of the flux suppression, i.e. GZK vs. maximum energy scenario

- fundamental constraints on UHECR sources
- galactic vs extragalactic origin
- reliable prediction of GZK v- and -γ fluxes

2. Search for a flux contribution of protons up to the highest energies at a level of ~ 10%

- proton astronomy up to highest energies
- prospects of future UHECR experiments

3. Study of extensive air showers and hadronic multiparticle production above $\sqrt{s}=70$ TeV

- particle physics beyond man-made accelerators
- derivation of constraints on new physics phenomena

Answering the science questions requires composition sensitivity event-by-event into the flux suppression region

Up to know, composition based solely on Fluorescence Telescopes, duty cycle ~10-15% (*different operation modus planned to yield factor ~2*)

- → most effectively achieved by upgrade of surface detectors (duty cycle 100%)
- → immediate boost in statistics by a factor of ~10 !

classical approach: enhance electromagnetic/muonic separation of stations (and time resolution)

N^µmax VS Xmax

How to Improve e/µ discrimination?

Letessier-Selvon et al., NIM A767 (2014) 41

$$S_{\text{top}} = a_{\text{top},\gamma} \cdot N_{\gamma} + a_{\text{top},\mu} \cdot N_{\mu}$$
$$S_{\text{bot}} = a_{\text{bot},\gamma} \cdot N_{\gamma} + a_{\text{bot},\mu} \cdot N_{\mu}$$

22 20 18 16 Signal [VEM peak] e[±] γ rec $e^{\pm}\gamma$ true 14 12 10 6Ē -150 -100 time [8 ns] -400 -350 -300 -200 Signal [VEM peak] 16 E μ^{\pm} rec 14 −µ[±] true 12 10 N_µ(t) 8 6 0 -400 -350 -300 -200 ⁻¹⁵⁰ -100 time [8 ns] -250

Linear system of equations:

$$\begin{pmatrix} S_{\text{top}} \\ S_{\text{bot}} \end{pmatrix} = \begin{pmatrix} a_{\text{top},\gamma} & a_{\text{top},\mu} \\ a_{\text{bot},\gamma} & a_{\text{top},\mu} \end{pmatrix} \begin{pmatrix} N_{\gamma} \\ N_{\mu} \end{pmatrix}$$
$$\begin{pmatrix} N_{\gamma} \\ N_{\mu} \end{pmatrix} = \begin{pmatrix} a_{\text{top},\gamma} & a_{\text{top},\mu} \\ a_{\text{bot},\gamma} & a_{\text{top},\mu} \end{pmatrix}^{-1} \begin{pmatrix} S_{\text{top}} \\ S_{\text{bot}} \end{pmatrix}$$

Coefficients determined from detector Monte Carlo (and verified to be constant as a fct of zenith angle, primary energy and mass)

Karl-Heinz Kampert – University Wuppertal

Performance of Scintillator+WCD

May be able to use matrix inversion technique, similar to LSD:

$$\begin{pmatrix} S_{\rm Scin} \\ S_{\rm WCD} \end{pmatrix} = \begin{pmatrix} 0.54 & 0.3 \\ 0.46 & 0.7 \end{pmatrix} \begin{pmatrix} S_{\rm em} \\ S_{\mu} \end{pmatrix} \qquad b \simeq \frac{A_{\rm Scint}}{A_{\rm Scint} + A_{\rm WCD}} = 4/14 \simeq 0.29$$

Matrix independent from primary, here:

Comparison of proton and iron primaries; ±1%

Event-by-Event resolution of µ-ratio ~ 20%

4 m² ASCII prototype

Some Prototype Results

Prototype experiences accompanied by detailed performance estimates

CORSIKA Shower libraries were generated with different

70

60

50

40

30

20

10

n

-410

- energies (fixed and continuous)
- primaries
- zenith angles
- interaction models
- performance then studied
- per station and
- per event

Note: enhanced SD helps also improving photons and neutrino detection

Discriminant [a.u.]

Power of Composition Enhanced Astronomy

assume present statistics: N=146 events (E>57 EeV), P_{iso}=0.21 and study correlation significance when protons correlate, but Fe does not

white lines: contour levels at sigma = 1, 2, 3, ...

Power of Composition Enhanced Astronomy

assume present statistics: N=146 events (E>57 EeV), P_{iso}=0.21 and study correlation significance when protons correlate, but Fe does not Add 20% isotropic background: catalog incompleteness, distant sources, ...

white lines: contour levels at sigma = 1, 2, 3, ...

Conclusions

Enhancing the surface detector array for better em/mu separation will boost the science of Auger

- \rightarrow factor of ~10 in statistics for composition measurements
- → GZK vs maximum energy
- → allow p-astronomy (composition enhanced anisotropy)
- → learn about global features of hadronic interactions at $\sqrt{s} > 70$ TeV
- \rightarrow decisive prediction of UHE (cosmogenic) v-fluxes
- → decisive for next generation UHECR Experiments

Auger is well in place to address these questions for the next decade