Radiowave Detection of Ultra High Energy Cosmic Neutrinos and Cosmic Rays

Pisin Chen

Department of Physics and Graduate Institute of Astrophysics & Leung Center for Cosmology and Particle Astrophysics National Taiwan University

VHEPA, NTU, Taipei, April 2015

Ultra High Energy Cosmic Neutrinos: Two Regimes and Two Approaches

- cosmic neutrinos: energy > 100 TeV
- atmospheric background: 1~2 events per year

"GZK neutrino" must exist!

Neutrinos at 10¹⁷⁻¹⁹ eV required by standard-model physics

Unique window for UHE cosmos

Astrophys Potentials

• Origin of UHECR beyond the ankle: One of 11 science questions for the new century:

(US NRC Turner Committee Report, 2003)

"How do cosmic accelerators work and what are they accelerating?

$$p + \gamma_{2.7K} \to \Delta^* \to n + \pi^{\pm} \to \mu$$

- UHECR: Top-down or bot tom-up?
- If bottom-up, what acceler ates the cosmic particles?
- Where are the sources?
- GZK neutrino spectrum an d directions indispensable

Every Neutrino points back to its source !

Particle Physics Potentials

Simulations indicate that \sim 30% cross-section measurement is doable with 100 v events.

A. Connolly, Int. J. Mod. Phys. A 21, Suppl. 1, 163 (2006).

Evolution of v Flavors In-flight: v Oscillations and Decays

Two major discoveries about neutrinos in the past 20 years

Neutrinos oscillate;
 Neutrinos have mass.

The periodic change of neutrino flavor from one type into another is referred to as neutrino oscillations.

Possible neutrino mass hierarchies

8

Evolution of v Flavors In-flight: v Oscillations and Decays

Two major discoveries about neutrinos in the past 20 y ears:

- 1. Neutrinos oscillate;
- 2. Neutrinos have mass.

2. Neutrino Decay [Learned & Pakvasa (1995), Beacom et al. (2003)] Normal Hierarchy: $f_e^E : f_\mu^E : f_\tau^E = 2/3:1/8:5/24$

Inverted Hierarchy: $f_e^E : f_\mu^E : f_\tau^E = 0:2/5:3/5$

Approach 1 for Regime 1: Optical Cherenkov from Muon

Approach 2 for Regime 2: Askaryan Effect – Radiowave Cherenkov from nuetrino shower

Gurgen A. Askaryan 1928-1997

Cherenkov radiation: coherent at radiowave!

微中子之聲

高能微中子(V)在穿透冰層時,如果湊巧與一個原子核發生交互作 用,會產生一對正負電子,這新產生的正子和電子又會各自產生另一對 正負電子,於是在連鎖反應下產生許多以接近光速移動的正子與電子。 其中正子較易被冰吸收,因此電子的數量會較正子多出約20%。 當帶電體以接近光速在物質中行進時,會發出一種稱為「切侖科夫輻 射」的光,它的頻率範圍極廣,從藍光到無線電波,但能夠穿出冰層而 被「聽」見的,只有大約100MHz到10GHz的無線電波範圍。 經折射出冰面的切侖科夫輻射 是高空中的ANITA探測的目標 冰層 穿锈冰層的高能微 產生許多正 自電子對,其中正 子較易被冰吸收, 正子多出約20% 比例為4:5的正子、電子束以 接近光速向前飛馳時,會放出 切命科夫輻射,形狀像個較厚

> 的甜筒。未來ARA將直接在冰 面下擷取這輻射訊號。

SLAC Beam Test- Mini-Antarctica (June 2006)

Member Subscription Copy Library or Other Institutional Use Prohibited Until 2012

Published by The American Physical Society

ANITA made the cover of PRL (SLAC beam Test setup)

Absolute gain Calibration with real Askaryan pulse Mini-Antarctica with 10 tons of ice target

28.5 GeV electron beam (10⁹ electrons)

First measurement of Askaryan effect in Ice

ANITA as a neutrino radio telescope

Brian Mercurio & Chris Williams, OSU

- Pulse-phase interferometer (<30-60 ps timing) gives intri nsic resolution of <0.3° elevation by ~1° azimuth for arri val direction of radio pulse
- Neutrino direction constrained to ~<2° in elevation by e arth absorption, and by ~5-7° in azimuth by observed pol arization angle of detected impulse

Pre-launch rollout

- Launch from ~80m deep Ross Ice She lf (floats on Ross Sea)
- ~8 miles from McMurdo Station
- Affords flat, stable 1-mile diameter la unch pad

Photos: J. Kowalski

Life in McMurdo

Peter Gorham: Close the door please!

Everything needs to be recycled in McMurdo...

Deluxe suite...

that comes with furniture...

and penguins

ANITA-1

Live Days	17.3
Antennas	32
Quality Events	8.2M

Provides a new and efficient way to detect UHECR!

17

Energy scale, directions

 $\overline{\langle E \rangle} = 1.5^{+2}_{-0.4} \times 10^{19} eV$

ANITA-2 launched in Dec. 2008

One candidate GZK neutrino found!

Taiwan NTU team has identified a 'false' event (2010).

H-pol Events V-pol Events

ANITA-3 Launched in Dec. 2014

- ANITA-3 launched in Dec 2014
 - Turning on H-pol trigger for UHECRs
 Primary goal of mission
 - New correlation trigger
 → ~ factor 2 improvement
 - Low frequency antenna
 → 50% better efficiency in 180–300 MHz
 - − 8 more antennas
 → 10% Improve
- Overall more than factor ~2 improvement
- Flew for 22 days
- Data analysis in progress

ANITA-4 mission approved by NASA for flight in 2017

Beyond ANITA: Exavolt Antenna (EVA)

NASA super-pressure balloon as a RF reflector → Lower the threshold
Hits all current self-consistent cosmogenic neutrino models
Sensitivity up to 2 orders of magni tude over ANITA3&4
15,000 UHECRs events are detectable

ARA37 (Askaryan Radio Array)

37 4-string, 16-antenna stations covering $100 \text{km}^2 \text{ w}$. 3-5 v/yr Taiwan team will contribute 10 stations, or ¹/₄ of ARA.

Angular resolution: ~ 6° , Energy resolution: dominated by Bjorken y \rightarrow

 $\Delta E/E \sim 1$ @ 3x10¹⁸ eV

P Chen South Pole Science Lecture 111211

ARA

a large radio neutrino detector at the South Pole

Areal coverage: 150km²

ARA Station Geometry

4 RX strings + 2 calibration strings
2 V-pol + 2 H-pol / string = total 16 antennas
Nice vertexing with interferometry technique
→ Excellent background rejection

ARA Hardware

DAQ

RF over Fiber

Antenna

---->

Low Noise Amp

ARA1 Station Deployment (Jan 2012)

Successful Deployment of the ARA-1 Station 4 strings (at ~120 m depth) 16 Antennas ← Calibration pulser events

Taiwan's first major science project at South Pole

Collaborators come from all over the world to NTU

ARA Integration / Cold Temperature Test (2012, NTU)

ARA Deployment (2012-2013)

ARA Drilling System
Successful season

12 dry holes (~ 200 m)

Two station ARA-2,-3 deployed → running smoothly

Expect science results next year

Antenna deployment

ARA Deployment (2012-2013)

ARA 4-5 Instruments (2013-4) built at NTU Currently constructing ARA 6-7

40 LNA Boxes for ARA 4-5 Ready. All NTU-LNA!

All downhole Antennas (H-pol & V-pol) ready!

ARA2-3 Results

37

ARA Deployment Strategy -ARA10 proposal to MOST & NSF pending

Generation and Selection of Neutrino Samples

 A cylinder 8km in radius and 2km in height is set (medium: ice).

Direction Distribution of Detected Neutrino Events

(upper plot) Station spacing:1.33km. Neutrino flavor ratios: 1:1:1. The flavor ratios of detected events over all sky: $0.5850(\pm 0.0039): 0.1527(\pm 0.0016): 0.2623(\pm 0.0024).$

(lower plot) comparison of cur ve shapes (the scale of y-axis is arbitrary.)

Tau neutrino has a different shape from the other two.

P Chen South Pole Science Lecture 111211

Cherenkov Radiation in Near-field

- At ultra-high energy scale (> 10¹⁸eV), EM showers will b e extended due to the *Landau-Pomeranchuk-Migdal* effe ct.
- The shower size (*l*) becomes comparable to the detection d istance (*R*): $l \sim 50$ m at 10^{18} eV, 300m at 10^{20} eV; $R \sim 500$ m.
- The common far-field approximation fails in this case.
 => need to consider the *near-field* effect!!

Squeezing Effect

Peculiar behavior of Cherenkov radiation:
 Signal emitted from z₀ arrives the detector *first*!!

Radiation emitted from this region arrives the detector almost simultaneously => Largely enhances the signal!! P Chen South Pole Science Lecture 111211 42

Generic Feature of the Waveform

- LPM-elongated showers have a *stochastic multi-peak* structure (can be viewed as superposition of many sub-showers).
- Due to the enhancement of squeezing effect, the waveform displays a *bipolar & asymmetric* feature, regardless of the difference of multi-peak structure from shower to shower.

SLAC T-510: Radio-Synchrotron Emission by Shower (2014)

TAROGE (太魯閣)

Taiwan Astroparticle Radiowave Observatory for Geo-synchrotron Emission

- Radio Antenna Arrays on top of high mountain
- Looking toward the ocean
- \rightarrow Many high mountains (2-3km) on the East Coast
- Searching air-shower induced radio pulses
- \rightarrow Large coverage (up to the horizon)
- → High Duty Cycle (~100%)
- Smaller coverage than ANITA but lower threshold

	A vs. T	AROGE	
	Costrictay		
	Atmosphere	Reflected +	TAROGE
Ground Antarctic Ic	e O	cean Mou	untain
Parameter	ANITA-I	TAROGE (2km)+	Factor*
Detection Area*	1.1x10 ⁶ km ² , ³	$2.2 \text{x} 10^4 \text{ km}^{2_{4^2}}$	0.02
Operation Time₊ ²	30 days / 3 years+3	3 years₽ 🕐	36 .5₽
Signal Direction.	Reflected @	Direct + Reflected 🖓 😲	1.50
Frequency. ²	200 MHz – 1GHz40	100-300 MHz+) 🙂	¢
Integrated Signal Power®	70 <u>p</u> ₩.₂	130 pWe 🙂	
Geo-magnetic Field₽	60 <u>uT</u> ₽	45 <u>uT</u> ₽	
Observation Height _*	35 km₽	2 km₽	
Shower Height?	10 km₽	10 km#	
Radio Path Lengthe	45/ <u>cosθ</u> km₽	12/ <u>cosθ</u> km₽ 🙄	
Energy Threshold₽	5x10 ¹⁸ eV.	1.4x10 ¹⁸ eV. 🙄	
CR integrated Flux (E ^{-2.7}) _{v²}	9x10 ⁻³³ ₄ ,	80x10 ⁻³³ ,	<mark>8.9</mark> ₽
Net Factor₽	ته ت		<mark>9</mark> .7₽
Number of Eventse	16 (1 flight/3 yrs)+	155 / 3 yrs+ ²	ę

TAROGE Station

- Dual polarized LPDA Antennas (100-300 MHz)
- 3 masts and 6 antennas (interferometry available)
- Use affordable commercial digitizer
- Funded for initial study (NSC frontier prog.)
- Prototype 2013 \rightarrow Full station 2014

Straight forward for future extensions

TAROGE System

Antenna & Front-end Electronics

12 LPDA antennas (6 H-pol 6 V-pol) NTU LNA Multi-band, Multi-antenna trigger Commercial Digitizers

TAROGE Prototype (2014)

1000 m altitude site in HePing (T-Cement)

12 LPDA Antennas

6V-pol, 6 H-pol

100-300 MHz Band

4 Multi-band trigger

In-house LNA, Commecial digitizer (made in TW)

Commissioning July 2014

Trigger Boards

DAQ Box

Antennas / LNA Mount

TAROGE-1 Station

- Prototype station at 1km height @ Heping 12 Antennas (6 V-pol + 6 H-pol)
- Deployed in July 2014
- Minor damage when typhoon hit
- Steady operation so far

TAROGE-1 Validation / Calibr

Ground Pulser Event

Time Resolution

Interferometry map

Noise survey / Detailed calibrations for Sensitivity / Anthropogenic noise rejection Studies in progress

TAROGE Plan

TAROGE-2 station got funded, to be built in Summer 2015 Site survey in progress

-~ 2 km elevation

- Costal mountain site & deep mountain site (tau neutrinos)

TAROGE-15 proposal submitted to MOST Vanguard program

TAROGE 10+5

Site Survey

LeCosPA Experimental Group

National Taiwan University

Pisin Chen

Chin-Hao Chen

Ming-Huey A. Huang

Tsungche Liu

Jiwoo Nam

Jerry Shiao

William Chen

Shihao Wang

Chihching Chen

Janjung Huang

LiCe Hu 55

Shih-Ying