Intel Parallel Computing Centers

Profile of CMS Geometry in GeantV

Guilherme Amadio

April 7, 2015

Overview

¢ CMS Application in GeantV with ROOT for geometry

o VecGeom is not yet ready to run in GeantV

¢ Release builds of ROOT and VecGeom

%

No call stack information for now

o No kernel profiling

¢ Running on Core i7 4710HQ (2.5 GHz, 16GB RAM)

L R R R R

Use 8 threads to take advantage of hyper-threading

Set max memory to 12GB (never reaches the threshold)
Simulate 10 events, 5 buffered at a time

Using pp14TeVminbias.root with HepMC

No graphics monitoring when profiling

CPU Usage

Elapsed Time
- N W b
N o o

“u 0o 0o o

O O
o O o0

H
[¢J]

Elapsed Time
- N W
g o

0o 0o o o

o O
O O o0

General Exploration Analysis

enc

0 1 3 4 5 6 7 8 9
ok FEEEH
Simultaneously Utilized Logical CPUs
Advanced Hotspots Analysis
8, ry
0 1 2 3 4 5 6 7 9

ok F@q

Simultaneously Utilized Logical CPUs

General Exploration Analysis Summary

@ Elapsed Time: 163.652s
Instructions Retired: 1,438,574,157,858
CPI| Rate: 1.462

The CPI may be too high. This could be caused by issues such as memory stalls, instruction starvation, branch
misprediction or long latency instructions. Explore the other hardware-related metrics to identify what is causing...

CPU Frequency Ratio: 0.992
Paused Time: Os

@® CPUTime: 849.898s
Spin Time: 7.472s
Overhead Time: Os
© Effective Time: 842.427s

@ Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results

in improving overall application performance.

Function CPU Time

vmlinux] 102.526s
TList::LinkAt 65.041s
__ieee754_log_avx 61.494s
—_memcpy.avx_unaligned 49.231s
TGeoHMatrix::Multiply 40.739s
[Others] 530.868s

@® CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously.

Spin and Overhead time adds to the Idle CPU usage value.

Simultaneously Utilized Logical CPUs

@ Collection and Platform Info

This section provides information about this collection, including result set size and collection platform data.

Application Command Line: root "-b" "-q" "'runCMS.C"

Operating System: 3.19.0-gentoo Gentoo Base System release 2.2

Computer Name: antares

Result Size: 878 MB

Collection start time: 15:06:24 02/04/2015 UTC

Collection stop time: 15:09:08 02/04/2015 UTC

@® CPU
Name: 4th generation Intel(R) Core(TM) Processor family
Frequency: 2.5GHz

Logical CPU Count: 8

® Elapsed Time: 163.652s

Clockticks: 2,103,737,155,601
Instructions Retired: 1,438,574,157,858
CPI Rate: 1.462

The CPI may be too high. This could be caused by issues such as memory stalls, instruction starvation, branch
misprediction or long latency instructions. Explore the other hardware-related metrics to identify what is causing...

MUX Reliability: 0.999
Paused Time: Os

@ Filled Pipeline Slots:
© Retiring: 0.189
© Bad Speculation: 0.022
@ Unfilled Pipeline Slots (Stalls):
® Back-End Bound: 0.660
Identify slots where no uOps are delivered due to a lack of required resources for accepting more uOps in the
back-end of the pipeline. Back-end metrics describe a portion of the pipeline where the out-of-order scheduler
dispatches ready uOps into their respective execution units, and, once completed, these uOps get retired

according to program order. Stalls due to data-cache misses or stalls due to the overloaded divider unit are
examples of back-end bound issues.
® Memory Bound: 0.441
This metric shows how memory subsystem issues affect the performance. Memory Bound measures a
fraction of cycles where pipeline could be stalled due to demand load or store instructions. This accounts
mainly for incomplete in-flight memory d d loads that coincide with ion starvation in addition
to less common cases where stores could imply back-pressure on the pipeline.
® L1Bound: 0.381
This metric shows how often machine was stalled without missing the L1 data cache. The L1 cache
typically has the shortest latency. However, in certain cases like loads blocked on older stores, a load
might suffer a high latency even though it is being satisfied by the L1.
DTLB Overhead: 0.124
A significant proportion of cycles is being spent handling first-level data TLB misses. As with
ordinary data caching, focus on improving data locality and reducing working-set size to reduce...
Loads Blocked by Store Forwarding: 0.000
Split Loads: 0.000
4K Aliasing: 0.010
@ L3 Bound:
Contested Accesses: 0.025
Data Sharing: 0.015
LLC Hit: 0.109
® DRAM Bound:
LLC Miss: 0.060
© Store Bound: 0.061
@ Core Bound: 0.349
This metric shows how core non-memory issues limit the performance when you run out of 000
resources or are saturating certain execution units (for example, using FP-chained long-latency arithmetic
operations).
@ Port Utilization:
Cycles of 0 Ports Utilized: 0.512

The number of cycles during which no port was utilized.

Cycles of 1 Port Utilized: 0.251
The number of cycles during which only 1 port was utilized.
Cycles of 2 Ports Utilized: 0.139

Cycles of 3+ Ports Utilized: 0.0902
@ Front-end Bound: 0.129
@ Front-End Latency: 0.085
ICache Misses: 0.054
A significant proportion of instruction fetches are missing in the instruction cache. Use profile-guided
optimization to reduce the size of hot code regions. Consider compiler options to reorder functions...

ITLB Overhead: 0.016
Branch Resteers: 0.023
DSB Switches: 0.016
Length Changing Prefixes: 0.000
Assists: 0.044

© Front-End Bandwidth: 0.043

General Exploration Time Breakdown

CPU Time~ * . ceU
Process / Module / Class / Function / Call Stack Effective Time by Utilization Spin | Overhead Ins;r:tci::;c;ns F((::tle Frequency
B idle @ Poor [Jok @ deal [Over Time Time Ratio
“root.exe w1 TGN T 7472 0s 100.0% 1.462 0.992
‘libGeom.s0.6.03 23.1% I 0s 0s 33.4% 1.012 0.993
‘libGeant_v.so 17.8% [l 0s 0s 13.2% 1.961 0.990
‘libXsec.so 15.3% [} 0s 0s 15.0% 1.497 0.995
‘libm-2.20.s0 13.7% [} 0s 0s 19.2% 1.045 0.993
svmlinux 12.1%.] Os Os 5.1% 3.454 0.993
“libCore.s0.6.03 9.5% [} 0s 0s 6.6% 2.096 0.993
“libc-2.20.s0 6.1%[0s 0s 5.3% 1.696 0.987
“libpthread-2.20.s0 0.0% 7.472s 0s 0.3% 4.310 0.983
‘libMathCore.s0.6.03 0.5%| 0s 0s 0.8% 0.845 0.993
*libGeantExamples.so 0.4%| Os Os 0.4% 1.682 0.993
#1d-2.20.s0 0.4%| 0s 0s 0.2% 2.491 0.968
“libEG.50.6.03 0.1%| 0s 0s 0.1% 1.253 0.907
+libCling.s0.6.03 0.1%| 0s 0s 0.2% 0.799 1.346
‘libstdc++.50.6.0.20 0.0%| 0s 0s 0.0% 5.301 0.976
“1ibRI0.50.6.03 0.0%| 0s 0s 0.1% 0.419 1.392
“libz.50.1.2.8 0.0%| 0s 0s 0.0% 0.536 1.182
‘libHepMC.so0 0.0%| 0s 0s 0.0% 1.300 1.625
+libThread.s0.6.03 0.0%| Os Os 0.0% 0.000

Advanced Hotspots Time Breakdown

Process / Module / Class / Function / Call Stack

-root.exe
+libGeom.s0.6.03
+libGeant_v.so
+libXsec.so
+libm-2.20.s0
+libCore.s0.6.03
svmlinux
+libc-2.20.s0
“libpthread-2.20.s0
+libMathCore.s0.6.03
+libGeantExamples.so
+1d-2.20.s0
+libEG.50.6.03
libCling.s0.6.03
+libstdc++.50.6.0.20
+libR10.50.6.03
+libz.s0.1.2.8
“libHepMC.so
+libHist.s0.6.03

+X86_64-pc-linux

+cclplus

“root

“sh

+Idd

“awk
+X86_64-pc-linux

CPU Time *©
Instructions

] .
Effective Time by Utilization Spin 0ve!'head Retired
@ idle @ Poor [JOk @ Ideal [Over Time Time

98.9%

25.3% | I
18.5% [l
15.8% [

15.2% [I}
9.8%|l}
6.5%[])
6.1%[l)
0.0%
0.5%|
0.5%|
0.4%|
0.1%|
0.1%|
0.0%|
0.0%|
0.0%|
0.0%|
0.0%|
0.0%|
0.0%|
0.0%|
0.0%|
0.0%|
0.0%|
0.0%|
0.0%|
0.0%
0.0%

8.378s Os 100.0%
Os Os 34.3%
Os Os 13.3%
Os Os 15.2%
Os Os 19.5%
Os Os 6.6%
Os Os 3.4%
Os Os 5.4%

8.378s Os 0.4%
Os Os 0.8%
Os Os 0.4%
Os Os 0.2%
Os Os 0.2%
Os Os 0.2%
Os Os 0.0%
Os Os 0.1%
Os Os 0.0%
Os Os 0.0%
Os Os 0.0%
Os Os 0.0%
Os Os 0.0%
Os Os 0.0%
Os Os 0.0%
Os Os 0.0%
Os Os 0.0%
Os Os 0.0%
Os Os 0.0%
Os Os 0.0%
Os Os 0.0%

CPI
Rate

1.321
0.974
1.824
1.373
1.040
1.965
2.505
1.517
3.722
0.820
1.524
2.510
1.029
0.768
3.404
0.390
0.551
2.333

0.810
1.000
1.000
1.000
1.000
1.000
1.000
0.667
1.000
1.000

CPU
Frequency
Ratio

1.003
1.002
0.998
1.000
1.012
1.006
1.007
1.009
0.962
0.991
0.958
1.030
0.986
1.378
0.861
1.389
1.265
1.167
0.000
1.417
1.000
1.000
1.000
1.000
1.000
1.000
2.000

Breakdown of Time Spent in Top Functions

Function Stack

-Iu Total
~ [vmlinux]
u TList::LinkAt
v __ieee754_log_avx
v __memcpy_avx_unaligned
s TGeoHMatrix::Multiply
» TTabPhysMgr::SampleFinalStates
+TGeoNodeCache::CdDown
v__dubsin
» TFinState::SampleReac
v GeantTrack_v::AddTrackSync
» TGeoNavigator::CdDown
» GeantTrack_v::PropagatelnVolumeSingle
+“TMXsec::Range
v GeantTrack_v::AddTracks
» TGeoHMatrix::CopyFrom
v GeantScheduler::AddTracks
» WorkloadManager:: TransportTracks
“TMXsec::Eloss
« TPXsec::SampleReac
+TMXsec::ProposeStep
+ GeantTrack_v::ComputeTransportLengthSingle
+ TGeoTrap::Safety
+ TObject::SetBit
v __sin_avx
+ TGeoBranchArray::UpdateNavigator
+ TMXsec::Samplelnt
+ TPFstate::SampleReac
+ GeantBasketMgr:AddTrack
u__ieee754_atan2_avx
+ TGeoNavigator::Safety

CPU Time: Total

Effective Time by Utilization
Hidle @Poor [Jok MIdeal @Over [@Idle @Poor [JOk W Ideal [Over

99.1%

12.1%[H]

7.7%[)
7.2%[
5.8%[]
4.8%])
2.8%|
2.6%]
2.4%]
2.2%]
2.0%|
1.8%]
1.7%|
1.5%|
1.4%|
1.4%|
1.3%|
1.3%|
1.3%|
1.3%|
1.3%|
1.2%|
1.2%|
1.2%|
1.2%|
1.1%]|
1.0%|
1.0%|
1.0%|
1.0%|

1.0%|

CPU Time: Self

Effective Time by Utilization

Os

102.526s [l]]

65.041s]
61.494sl)
49.231s]
40.739s]]
23.595s]
21.691s|
20.470s|
18.512s|
17.105s|
15.484s|
14.115s|
12.752s|
11.994s|
11.616s|
11.275s|
11.255s|
10.782s|
10.747s|
10.675s|
10.431s|
10.424s|
10.066s|
10.006s|
9.682s|
8.653s|
8.420s|
8.411s|
8.324s|
8.282s|

= Instructions Retired:

Total

1,438,574,157,858

73,540,110,310
68,856,103,284
157,878,236,817
70,554,105,831
131,286,196,929
36,666,054,999
62,004,093,006
38,748,058,122
19,278,028,917
19,794,029,691
43,038,064,557
31,496,047,244
27,002,040,503
13,572,020,358
34,034,051,051
10,710,016,065
8,602,012,903
17,790,026,685
16,034,024,051
16,100,024,150
16,286,024,429
29,086,043,629
16,806,025,209
22,992,034,488
15,358,023,037
17,764,026,646
17,684,026,526
4,034,006,051
14,672,022,008
18,938,028,407

Instructions Retired:
Self

0
73,540,110,310
68,856,103,284

157,878,236,817
70,554,105,831
131,286,196,929
36,666,054,999
62,004,093,006
38,748,058,122
19,278,028,917
19,794,029,691
43,038,064,557
31,496,047,244
27,002,040,503
13,572,020,358
34,034,051,051
10,710,016,065
8,602,012,903
17,790,026,685
16,034,024,051
16,100,024,150
16,286,024,429
29,086,043,629
16,806,025,209
22,992,034,488
15,358,023,037
17,764,026,646
17,684,026,526
4,034,006,051
14,672,022,008
18,938,028,407

CPI Rate: | CPI Rate:

Total

1.462
3.453
2.326
0.963
1.717
0.768
1.607
0.867
1.314
2.334
2.140
0.891

1.100
1.156
2.149
0.836
2.596
3.285
1.473
1.665
1.646
1.564
0.883
1.502
1.064
1.525
1.155
1.205
5.129
1.388
1.086

self Module

3.453 vmlinux

2.326 libCore.s0.6.03
0.963 libm-2.20.s0
1.717 libc-2.20.s0
0.768 libGeom.s0.6.03
1.607 libXsec.so
0.867 libGeom.s0.6.03
1.314 libm-2.20.s0
2.334 libXsec.so
2.140 libGeant_v.so
0.891 libGeom.s0.6.03
1.100 libGeant_v.so
1.156 libXsec.so
2.149 libGeant_v.so
0.836 libGeom.s0.6.03
2.596 libGeant_v.so
3.285 libGeant_v.so
1.473 libXsec.so
1.665 libXsec.so
1.646 libXsec.so
1.564 libGeant_v.so
0.883 libGeom.s0.6.03
1.502 libCore.s0.6.03
1.064 libm-2.20.s0
1.525 libGeom.s0.6.03
1.155 libXsec.so
1.205 libXsec.so
5.129 libGeant_v.so
1.388 libm-2.20.s0
1.086 libGeom.s0.6.03

Breakdown of Time Spent in Top Functions

Function Stack

y__ieee754_log_avx

u TGeoHMatrix::Multiply
¥__memcpy_avx_unaligned

u TList::LinkAt

u TGeoNodeCache::CdDown

» [vmlinux]

» TGeoNavigator::CdDown

» TTabPhysMgr::SampleFinalStates

» TGeoHMatrix::CopyFrom

»__dubsin

» GeantTrack_v::PropagatelnVolumeSingle
u TGeoTrap::Safety

+TMXsec::Range

¥ __sin_avx

v GeantTrack_v::Add TrackSync

u TFinState::SampleReac

» TGeoNavigator::Safety

» TPFstate::SampleReac

u TMXsec::Eloss

s TMXsec::Samplelnt

» TObject::SetBit

+ TMXsec::ProposeStep

» TGeoBranchArray::UpdateNavigator
» GeantTrack_v::ComputeTransportLengthSingle
u TPXsec::SampleReac

¥__cos_avx

vdo_cos.isra.2
v__ieee754_atan2_avx

u GeantTrack_v::AddTracks

Idle
0.012s]
0.011s]
0.012s|
0.016s]
0.002s|
0.017s]
0.005s]|
0.005s|
0.001s]|

Os
0.003s]
0.005s]|
0.004s]|
0.001s]
0.007s]
0.003s]|
0.001s]|
0.002s|
0.001s]|
0.001s]
0.003s|
0.006s]
0.002s]
0.002s]|
0.004s]|

Os
0.001s]
0.001s|
0.001s]|

CPU Time: Self
Effective Time by Utilization
Poor Ok
3.222s] 15.135s]
1.766s]| 9.981s]|
2.144s]| 11.344s|
3.019s| 16.202s|]
0.947s| 5.232s|
7.041s[] 26.429s)
0.762s| 3.753s|
0.955s| 5.315s|
0.548s| 3.039s|
0.834s| 4.631s|
0.620s| 3.472s|
0.407s| 2.405s|
0.572s| 3.066s|
0.429s| 2.393s|
0.641s| 3.916s|
0.706s| 3.740s|
0.358s| 2.053s|
0.391s| 1.957s|
0.442s| 2.478s|
0.306s| 1.998s|
0.420s| 2.334s|
0.4665| 2.5665|
0.379s| 2.076s|
0.408s| 2.367s|
0.424s| 2.401s|
0.319s] 1.698s|
0.177s| 1.162s|
0.387s| 2.137s|
0.613s| 2.948s|

Ideal
41.966s]|
28.664s|
29.194s]
41.797s|
14.429s|
14.881s|
10.551s|
14.663s|

8.669s]|
13.257s|
9.742s|
7.496s|
8.306s|
6.469s]|
10.4855s|
9.762s|
5.632s|
5.509s|
7.310s|
5.8365]
6.049s|
6.736s]|
5.514s]
6.144s]|
6.3765]|
4.518s|
3.192s]
5.527s|
6.377s]|

w [

Instructions Retired: Total~

11.2% [l
9.5%[l)
5.0%[
4.9%|)
4.4%]
3.4%|
3.2%|
2.6%]
2.5%|
2.5%|
2.2%]
2.1%]
1.9%]|
1.5%|
1.4%|
1.4%]|
1.4%|
1.3%|
1.3%]
1.2%|
1.2%|
1.2%|
1.2%|
1.1%|
1.1%|
1.1%]
1.1%|
1.0%|
1.0%|

CPI Rate: | CPI Rate:

Total

0.948
0.765
1.507
2.202
0.829
2.458
0.856
1.445
0.852
1.316
1.088
0.895
1.133
1.068
1.856
.822
.036
146
1433
159
.251
444
.210
.373
476
1.048
0.746
1.424
1.813

N W U U U W W U (i 'Y

self Module

0.948 libm-2.20.s0
0.765 libGeom.s0.6.03
1.507 libc-2.20.s0
2.202 libCore.s0.6.03
0.829 libGeom.s0.6.03
2.458 vmlinux

0.856 libGeom.s0.6.03
1.445 libXsec.so
0.852 libGeom.s0.6.03
1.316 libm-2.20.s0
1.088 libGeant_v.so
0.895 libGeom.s0.6.03
1.133 libXsec.so
1.068 libm-2.20.s0
.856 libGeant_v.so
.822 libXsec.so

.036 libGeom.s0.6.03
.146 libXsec.so

.433 libXsec.so

.159 libXsec.so

.251 libCore.s0.6.03
444 libXsec.so

.210 libGeom.s0.6.03
.373 libGeant_v.so
.476 libXsec.so

.048 libm-2.20.s0
0.746 libm-2.20.s0
1.424 libm-2.20.s0
1.813 libGeant_v.so

RN W U U U (U W U W (U G 'y

-

Preliminary Conclusions

Large amount of time spent in system
o Kernel accounts for 3.4% of instructions, but 12.1% of time
o Possible reason: threads waiting add to this time?

Second largest amount of time is spent at TList::LinkAt
o Need to learn what the list is being used for
o Can we substitute it for a vector in some places?

Memory alignment may be an issue
o __memcpy_avx_unaligned with high amount of time

Significant time spent multiplying matrices
o Quaternions might help if those are from chained
coordinate transformations
Switch to VecGeom may improve alignment problems

Logarithm function taking significant amount of time
o Can we parameterize tables using log,? That might help.

