## Mini-Review on CLIQ Units

CERN, April 8 2015

Felix Rodriguez-Mateos, TE-MPE

## Agenda

| 1. Scope and objectives of the review                                    | Félix Rodríguez Mateos | 10' |
|--------------------------------------------------------------------------|------------------------|-----|
| 2. Introduction to the CLIQ protection method                            | Emmanuele Ravaioli     | 15' |
| 3. General aspects of the design, choice of components and safety issues | Knud Dahlerup-Petersen | 15' |
| 4. Details of the design                                                 | Joaquim Mourao         | 30' |
| 5. Integration and implementation                                        | Mathieu Favre          | 15' |
| 6. Discussion and questions from the panel                               | All                    | 30' |



## Scope of the review

- Several units of CLIQ power supplies have been manufactured by the MSC Group over the last months (years) and used at CERN for testing of different magnets in SM18
  - We do not pretend to conduct a review on the "ad-hoc" design of those units, which has given good results so far
  - This previous design has given the needed flexibility to optimize parameters as capacity, voltage/current, frequency and dumping time constant
- There is now a request to the MPE Group to produce 3 units, 2 of which will be sent to FNAL by the end of May. The third one will serve as spare
  - This review focuses only on the design of these latter units keeping <u>an eye on future</u> <u>developments</u>





# Near future plan for protecting magnets with CLIQ

#### LHC-high luminosity upgrade

- QXF is the inner triplet large quadrupole strings of magnets either side of the ATLAS and CMS.
  - Model testing in Fermi-lab (Two units plus spare)
  - Model testing in CERN (Two units plus spare)
  - First long magnet prototype test in BNL (Two units plus spare)
  - Production of 32 + spares units for LHC-HL, assuming two units per magnet.





Courtesy Glyn Kirby

### Longer term possibilities for use in LHC-HL upgrade

- CERN
  - Orbit correctors for LHC-HL: Twin aperture independently powered dipole
  - MQY for LHC-HL with pushed performance for the upgrade. Currently being tested in SM 18 at CERN.
    - Each magnet would need 4 units
  - LHC: Main dipole is being tested at CERN in SM18 in the following months in view for rapid repair of LHC systems
- Outside CERN
  - KEK Japan: D1, LHC-HL Single aperture standalone dipoles requiring 4 units + spares
  - CEA France: Q4 Twin aperture quadrupoles ~ 16 units + spares
  - **GSI**: they are investigating for use with their magnet systems
- Further future
  - 16 Tesla hybrid FCC models
    - block design & cos-theta design could benefit from CLIQ
    - CCT design (canted cosine theta) may rely on CLIQ; LBNL have requested two units for future testing of their 16 Tesla CCT magnet.



Information from Glyn Kirby

## Objectives

- Validation of the concept
- Coherence of the choices with respect to the established functionalities
- Correctness with integration and implementation according to the electrical standards applicable
- Safety aspects



## Panel

- Jean-Paul Burnet, TE/EPC
- Alexander Erokhin, TE/MPE
- José Carlos Gascón, DGS-SEE-XP
- Christian Giloux, TE/MSC
- Andrzej Siemko, TE/MPE (ex-officio)
- Yves Thurel, TE/EPC



7

