P348
 Search for Dark Photon

Dipanwita Banerjee, ETH Zurich H4 Beam Users Meeting

DESY (Hamburg); ETH (Zurich); IAP (Paris); Ins. for Nucl. Res. (Moscow); Joint Inst. for Nucl. Res. (Dubna); KAIST (Daejon); State Res. Centre of the Russian Federation (Protvino); Uni. Patras (Patras); UTFSM (Chile)

April 15, 2015

A' production and decay

Origin of Dark Matter- great puzzle for particle physics, astrophysics and cosmology. A^{\prime} is the vector boson which mediates the interaction between our and Dark matter through mixing with ordinary photon $(\gamma), \gamma-A^{\prime}$ mixing strength, ϵ and A^{\prime} mass are free parameters to be measured.

$$
e Z \rightarrow e Z A^{\prime} \text { cross-section } \sigma_{A^{\prime}} \sim \epsilon^{2}\left(\frac{m_{e}}{M_{A^{\prime}}}\right)^{2} \sigma_{\gamma}
$$

Bjorken'09, Andreas'12.
For long lived A^{\prime}, sensitivity $\sim \epsilon^{4}$, as is typical for beam dump experiments.

$$
\begin{aligned}
\text { But for } & 10^{-5}<\epsilon<10^{-3} \text { and } \\
M_{A^{\prime}} \lesssim & 100 \mathrm{MeV}: \\
& \rightarrow \text { very short lived } A^{\prime}: \\
& 10^{-14}<\tau_{A^{\prime}}<10^{-10} \text { sec. } \\
& \rightarrow \text { very rare events: } \\
& \sigma_{A^{\prime}} / \sigma_{\gamma}<10^{-13}-10^{-9} . \\
& \rightarrow A^{\prime} \text { energy boost to displace decay } \\
& \text { vertex: } \epsilon \sim 10^{-4}, M_{A^{\prime}} \sim 100 \mathrm{MeV}, \\
& E_{A^{\prime}} \sim 100 \mathrm{GeV}, L_{\text {decay }} \sim 1 \mathrm{~m} .
\end{aligned}
$$

Setup to search for $A \rightarrow$ invisible decay in 2015

> Signature: $=\mathrm{S} \times \mathrm{ECAL} \times \overline{V \times H C A L}$ single e-m shower in ECAL

$$
E_{E C A L}<E_{0}
$$

no activity in Veto and HCAL.

The main goals of the run 2015

\rightarrow Detector tests and calibration with e^{-}, pion, kaon and proton beams.
\rightarrow ECAL- 6×6 modules
\rightarrow HCAL- 3×3 cells $\times 4$ modules, 1 module $=3.5$ ton.
\rightarrow Accumulation upto 10^{9} electrons, pions, kaons, protons to test detector performance, in particular HCAL hermeticity.
\rightarrow Energy $10-50 \mathrm{GeV}$ and 100 GeV .
\rightarrow Accumulate $>10^{9}$ electrons at 120 GeV .

Delivery of HCAL at CERN

Dipanwita Banerjee, ETH Zurich H4 Beam Users Meei P348

Preparation area/Clean room: \rightarrow Already allocated. Plan to start assembly end of April.
Electronic Room: Space required to set up the readout electronics rack for the Micromegas Spectrometer close to the magnet and also some space for the electronics of the downstream detectors. Electronic channel tests to estimate noise need to be done before the test beam period in the experimental area.
Exceptional transport requests: crane for HCAL modules.
Spectrometer Magnet: MBPL magnet required - 2 m , core diameter $\sim 170 \mathrm{~mm}$, strength $\sim 1.5 \mathrm{~T}$.
high electric power, cryogenics, experimental gases: no request for Cryogenics, Ar-Isobutane mixture (95-5\%) for Micromegas detectors.
Mechanical Support: 15 m vacuum beam pipes for the Micromegas spectrometer and synchrotron counters.
x / y tables: 4 ton for calibration of HCAL modules.

Requested Beam Parameters

Calibration:
$\rightarrow e^{-}: 10,30,50,120 \mathrm{GeV}$, a few $10^{4} e^{-} /$spill.
$\rightarrow \pi, \mathrm{p}: 50,100 \mathrm{GeV}$.
$\rightarrow \mu: 100 \mathrm{GeV}$.
Data:
$\pi+\mathrm{K}:$
$\rightarrow 40-50 \mathrm{GeV}$.
$\rightarrow 10^{5}-10^{6} /$ spill, accumulation up to $10^{9} \pi$ or more.
\rightarrow a few cm^{2} spot size.
\rightarrow low energy tail as small as possible.
\rightarrow K mesons selected with a Cerenkov counter.
protons:
$\rightarrow 100-200 \mathrm{GeV}$,
$\rightarrow 10^{5}-10^{6} /$ spill, accumulated up to 10^{9}.
\rightarrow a few cm^{2} spot size.
\rightarrow low energy tail as small as possible.
electrons: 120 GeV or lower energy:
\rightarrow intensity as maximum as possible per spill. $\sim 10^{5}-10^{6}$
expected.
\rightarrow accumulation $\sim 10^{9} e^{-}$or more.
\rightarrow no low energy tail- very important.
\rightarrow compact beam, a few cm^{2} spot size at ECAL/ parallel beam.

Thank You !!!

