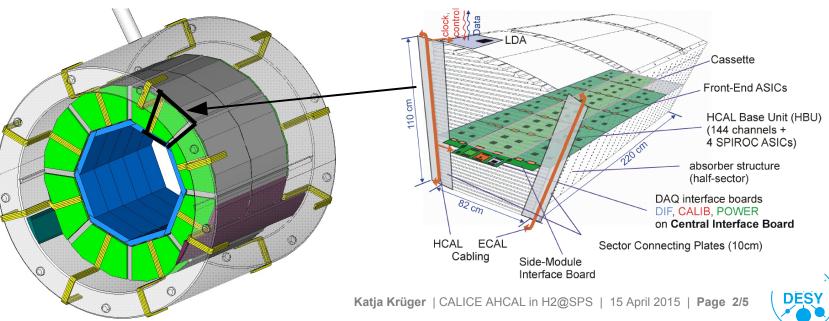
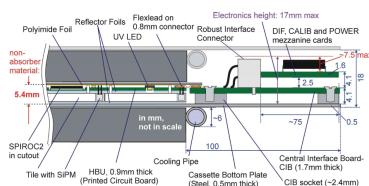
CALICE AHCAL in H2

- > Beam time: 8 22 July 2015> Setup & Goals
- Layout and Supplies
- > Beam Parameters

Katja Krüger H2/H4 beam users meeting, 15 April 2015





CALICE AHCAL Technological Prototype

- > high granularity hadron calorimeter (3*3 cm² tiles)
- scalability to large detector
- compact layout
- > embedded readout electronics
- data concentration
 - 8 mio readout channels
 - I cable going out of the detector per
 - ~100 000 channels

Current setup of AHCAL technological prototype

- > steel absorber structure
 - as planned for ILC detector barrel
- active layer configuration
 - 11 small layers (18*18 or 36*36 cm²): shower start finder
 - 4 big layers (72*72 cm²): shower profile, correlation of hit times

> goals

- measure shower profile and hit time correlations for pions
- real life practical test
- data to decide on tile and SiPM (variety of different tiles and SiPMs)

data sets

- wide muon beam for MIP calibration
- energy scan electrons & pions

Layout and Supplies

the complete setup is mounted on a platform (~2*2 m²)

- can be craned into the testbeam area
- weight is a few tons
- > preparation outside beam area
 - a few days in advance (if possible 7-10 days)
 - need external power (~1kW)

inside beam area

- need to adjust to beam height (distance feet to beam height should be ~1m, positioning to ~1cm precision)
- need external power (~1kW)
- signals from beam instrumentation (Cerenkov)
- to beam hut: ethernet connections, signals from counters
- no magnet, no gases, no cryogenics

Beam parameters

muons for calibration

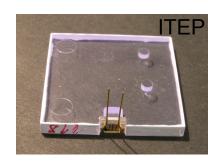
- a few days in the beginning
- energy and polarity not relevant
- intensity as high as possible
- wide beam

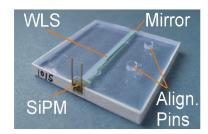
electrons

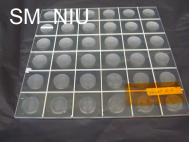
- polarity not relevant
- intensity: >10^3 to 10^4 (as high as possible)
- energy scan: 8 120 GeV, logarithmic binning
- spot size/divergence: not critical

pions

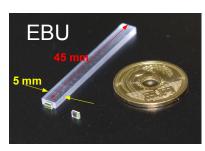
- negative polarity preferred (no proton background)
- intensity: >10^3 to 10^4 (as high as possible)
- energy scan: 8 120 GeV, logarithmic binning (highest stat. around 60 GeV)
- spot size/divergence: not critical


Backup




Katja Krüger | CALICE AHCAL in H2@SPS | 15 April 2015 | Page 6/5

Tiles/Strips and SiPMs


- 1 bottom readout EBU Hamamatsu MPPC with 10000 pixels
 1 longitudinal EBU
- Hamamatsu MPPC with 10000 pixels
- > 1 (old) transverse EBU Hamamatsu MPPCs with 1600 pixels
- > 1 megatile surface mount HBU 2 types of Hamamatsu MPPCs
- > 5 HBUs with old ITEP tiles with WLS CPTA SiPMs with 800 pixels
- > 2 HBUs with new ITEP tiles Ketek SiPMs with 12000 pixels
- > 2*4 HBUs with individually wrapped tiles Ketek SiPMs with 2300 pixels
- > 2*4 HBUs with individually wrapped tiles sensl SiPMs with 1300 pixels
- > 1 surface mount HBU with individually wrapped tiles (Uni Mainz)

Testbeam goals

data taking:

- muons for MIP calibration
- electrons to check calibration on EM scale
- hadrons: shower profile, hit time correlations
- "real life" practical test:
 - Iarge system
 - new DAQ
 - channel-wise power supply and power distribution
 - water cooling
 - variety of different tiles and SiPMs
 - full EUDET stack
- step towards a full AHCAL barrel module

