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Overview:
» New methods and techniques of scattering amplitudes gained huge progress in past 20

years, i.e. classical-level has been well-studied and understood, more loops, more
difficult;

> Interest in universal properties of low energy particle emissions was renewed;.
Novel factorization results have been discovered down to the sub-(sub)-leading order in
a soft momentum expansion

> Single/double/multiple soft structures are studied which might connect to some hidden
symmetries, e.g. the hidden infinite dimensional bms4 symmetry of quantum gravity S-

matrix, underlying patterns of symm. breaking

Outlines:

» On-shell method and spinor notation

> Single soft theorem in QCD @ tree-level

» Double soft Goldstone theorems (@) tree-level
» Conclusion and Outlook
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On-Shell Method and Boundary contribution

® Scattering amplitudes are determined by their poles through complex
deformation of external momenta

I= %A(z) = A(z=0)+ ) _Res (A(z))z : 1

> (P+pi(2)2 (+p)2+229 (p+pi)

® [fno boundary contribution in the contour integration (BCEW) :
2 — 00 A(Z) =0 Britto, Cachazo & Feng, 05’;Britto, Cachazo, Feng & Witten, 05" ., 2

n-2 .

(Aiz)>z =—’;iAL(pi(za),ph(za))PigAR(_p_h(za)’pj(zo‘)) ﬁr B § i ’ z

Higher-point amplitude constructed from sub-amplitudes .

® Boundary contribution of on-shell recurrence relation
B.Feng,Y. Jia, H.L.& M. Luo, 11’
R. H. Boels, 10’; Benincasa & Conde, 12’; Feng & Jin, 14’

" Introduce auxiliary field to enlarge the theory;

. Analyze Feynman diagrarns and isolate boundary

contribution, which can be evaluated;
. )
(a) Diagrams not giving boundary contributions (b) Diagrams giving boundary contributions . EXPreSS boundary 1n terms Of roots Of Amp S;

u Analyze pole structures of boundary

A= 3 Aulpica) b o)) o An(—p " (o) 2y (za)) + B

ion!
2ok a Open Question!

Choose a good momentum-deformation!
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A Quick Review of the Spinoral Notation

® Given a null momentum in 4dim space-time, define a 2-dim Weyl
spinor \ and an anti-spinor ) by Dirac equations

kaaAa(k) — O’ Xa(k)kaa — 0 See review: B.Feng, & M. Luo, 117

the null momentum can be decomposed as kg, = XdAa_

® Lorentz invariant inner products of 2 spinors or anti-spinors
(i7) = Al Njas [i]7] = AiaXS
® For massless fermions, definite helicity can be identified as

wslh) = 52k, o) = 2 (k)

1F s 1
ur(k) = uk)—5 2, ve(k) = (k)2
or write in terms of spinorial notations (angel/square brackets)

i) = k") = us (ki) = v-(ks), 4] = |k ) = u—(ki) = vy (ks).
(@ = (ki | =a=(ke) =v5(ks), ] = (k| = (ki) = 7= (ks)
® The polarization vector

. (v K] - _ [phw|k)
€, (klp) = \/I-%,Zﬂlk> v (klp) \/§ [u|k]




Single Soft:
Subleading Soft Behavior of QCD Amplitudes

H.L., P. Mastrolia and W.J. Torres Bobadilla, Phys.Rev. D91(2015) 065018
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Soft-Limit Behaviors at Tree-Level

® Graviton Amplitudes obeying a soft identity caciazo & swominger, 14
Moi1(kr, ko, kny q) = (SO + SW + S@) M, (k1 ko, ...kn) + O(¢%)

- Soft Operators derived from BCFW

Gauge invariance property requires the Vanishing of these

pole terms under the gauge transformation
- Invariant under gauge transformation according to
momentum conservation, angular momentum

conservation and anti—symrnctry of Lorentz gcncrator

® Lxtensions of the soft-limit topic
> In Different Theoretical Frames:

Pure-YM, String theory, with/without SUSY ...
> With Different Methods:

50 = Z

_ Z Euu(qp‘]g”)(qo"]gu)‘

Euukgkg 1) — . - ENng(qp‘]gV)
q.ka S():_zz—

q'ka

a=1

q'ka

Bern, Davies, Vecchia & Nohle;
Geyer, Lipstein, Mason;

Schwab & Volovich;

Larkoski; E. Casali;

Broedel, Leeuw, Plafka & Rosso;
He, Huang & Wen;

Bonocore, Laenen, Magnean, Vernazza &White ;

Afkhami-Jeddi

BCFW, Scattering Equation; Conformal Invariance; Gauge Invariance. ..

> In Different Dimensions:
4—dim; D-dim
> Involve Quantum Contributions:

Loop-correction; Soft-Collinear ET;... A Complementary Missing Piece:
Soft-limit property in quark- gluon amplitudes

with a soft gauge boson emitted from fermions

/
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® Soft—Photon Limit in QCD Amplitude:

» The soft gauge boson emitted from a bosonic leg has been

studied, one can consider the radiation from a fermion line

> To 1solate the fermionic emitter behavior, we would first study a
soft photon case from BCFW and gauge invariance approaches

B From On-Shell Recursion Relation Derivation

Ania(Agvs Agogrs -+ gn)

1 1
- (_25(0),1 +ES(1)A)An+2(AQ*Aq~gl~ e ’gn) + 0(1)

€

— Holomorphic spinor to the soft limit |s) — €ls) SO _ (nq) (ng) _ {aq)

— Leading soft singularity is the well-known universal factor; (ns)(sq) (ns)(sq) (qs)(sq)

- Sub—leading soft operator contains derivatives of quark/ anti-quark spinors

s — 28 _

” q q s —=3 — /1; (?
( Vs (sq) "~ o1g (@)~ o1
Vs
Vs q q
(a) (b) (c)

- /
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® Soft—Photon Limit in QCD Amplitude, cont’d.:

B From Gauge Invariance Approach
An+3(ks; k(jv kq1 k11 ey kn)

et(keirs) kg et (ksirs) - Kq -
N - ko) A(kg, kg iy - - Kn)0(Kg
( V2kg - ks V2k, - k, % (u( q)A(kg, kg, k1, .. . kn)v( q))

Oty g Gke) B ZRvu(kg) (LG LEY N\ 5,
+ An+3 (Eﬂ (ks, rs)ks, kq i ks s kq : ks 3 kq ] ks kq ] ks A(kq, kq, kl, “eey kn,) + O (ks)

— Use soft-momentum k, to denote the singularity |

— Non-radiative amplitudes ingredients: Dirac states u(k,) v(kg) ; E(kq, kg, ki1,...,kn) as
a function of explicit momenta

— Leading soft singularity comes from diagram (a) and (b)

— Sub-leading soft behavior from (a), (b) and (c) consists of soft-particle kinematic

information, spin angular-momentum actions and obital angular-momentum actions

[ 0 0
== LY =ikl —— — kY
F 4[}/ 7 ] e (L( i ak,“/ kz 5]91;4)
q
¢ Vs
Spin operators of fermionic emitter cannot be
; I's naively disentangled as bosonic emitter. ..
o ( g
Careful treatment to connect two derivations!
(a) (b) (c)
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® Equivalence of Two Derivations :

> Leading Singularities et(kgiry) - ky et (kgry) k

S50 — 7_ 4
- Derived from direct calculation V2ky ks V2kg ks
_ {99 gop
\as){s) LY u (ki) = LY va (k;) = 0
> Sub-Leading Singularities: Ut (ki) LY =0 (ki) LY =0

Strategy: BCFW Derivation % Gauge-Invariance Derivation

Sub—leading soft operators acti gon

i ) (ks;rs) ksy S .
Proposition 1: SWAy(ky) = — p (KsiTs) S 0 (ky) Dirac field states, only spin oplerator

z q
V2kg - ks contributes(R.H.S.), obital ghgular
. momenta do not contribute
Proof: Consider an outgoing antiquark: r; = +3 vy (kg) = Ay = |q]
BCFW Derivation: SO v, (kg) = ( )1 A ‘3 — ‘l_ A i) > M= — s
(sq) "oxe  (sq) “oN (sq)
G | ' Deriva 1 67{(:1\'5 'r.s') ksl/ l;’ -1'_+_(k—) _— 1 |s]
auge-Invariance Derivation: 5L 1L +\Rg) = 1!
\/Zl\..q kg (sq)

1 E:(ks, 7".5-) ksy
\/§kq ' ks

Outgoing quark, proof is similar as proposition 1.

v
b F

Proposition 2: sWrg(k,) = - [ﬁ(kq)




® Fquivalence Proof of Next-leading Soft Singularity :

» Next-to-Leading Soft Singularity, cont’d

Proposition 3: Sub-leading soft operators acting on functions of momenta,
SONi(k kK ; only obital angular momenta operators contribute (R.H.S.),
(kg kg, Ky, - - s in) spin angular momenta do not contribute

€+(k5‘-: 7‘5.)ng LK L 3
—_ H Sy b [ q . q Ak(-—,k(-’k __._‘k'l
& \/§ [(qus qus) ( 73 Tvgs V1 ; r)]

Proof: Consider an outgoing antiquark

-

. . : o
Alkg, kg Ky, k) A rational function of polarizations and momenta of gluons, momenta

of quark/ anti—quark & gamma matrices: expressed with spinor chains

BCFW Derivation: Gauge-Invariance Derivation:
e . j12% ./ —~1 P .
S(l))\ [. (i] — 1 [. S] B 25# (As Ts) ksy Lq B Lf,“ P — n 1 ((]I"‘,’p|s]
59) V2 kg ks kg k) 0 (sq) 2
G(A L -4 1 [p s] B 152- (ks'a Ts) ksy ( Lgu B Lf-,“/ ) 1 _ 1 [p s]
(pq (pql (sq) [pql V2 ki ks kq-ks) p-kg p-kg{sq)[pql

Connections Up to An Overall Minus Sign, Equivalence Proof Done!
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® Soft-Gluon Limit in QCD Amplitude:

> Case 1: Soft gluon adjacent to one quark and one gluon

n S & q Combine results of pure-
s YM and soft-photon from
S _ q fermionic emitter
q q
(a) (b)

(c)

> Case 2: Soft gluon adjacent to two gluons
m~+1 Although, results are similar to pure-YM,

m+1 ) g However, physics insight is different
j:&“““\ ;%“““’% according to diagram (c) and (d).
S m

m
(a) (b) Further1: Can we inverse the soft limit
procedure to derive the n+1-pt amplitude
m—+1 Wa’i m+1 w*\fﬁi from n—pt? Open question!
S S
A Further2: IR Divergence structure
m N m (-
@( \\ involving both soft and collinear effects, and

(c) (d) quantum corrections?
Two-loop, talk by Zhu, Amplitude 2015

- /




Soft Emissions of Off-shell Currents & Their On-
Shell Limits In NLSM

Yi-jian Du & H.L., JHEP 1508(2015) 058
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Soft Behaviors and Symmetries

® Soft behaviors of S-matrix connected to symmetries
Potential for discovery of hidden symmetries of quantum gravity or YM S-matrix

® Soft limits for massless Goldstone bosons of spontaneously
broken symmetry can be studied via Amplitude

> Single soft emission: Adler zero  [ampl, Novotny &lrnka, 2013
Du & H.L.,2015]

»> Double soft emission:

n+2
. ) y a 7 Re(¢) T
fim Ant2(9'(50), 8/ (B2) 3, om +2) = 3 ST T TR, 4 2)

[Ple ﬂ<a, Amplitude 2015]

One can read out symmetry algebra from double soft limit (rotation in the vaccum)!

Examples: Soft pions, Hidden E7(7) symmetry in N=8 SUGRA  [Arkani-Hamed, Cachazo, Kaplan, 08
® Related works.:

= Soft limits of Scalars & Fermions in N<8 SUGRAs [Chen, Huang & Wen, 14']

= Soft limits of Scalars & Photons in DBI, Galileon,

Einstein-Maxwell-Scalar and NLSM [Cachazo, He & Ye, 157; Du & Luo, 15’]

u Double/Trlple soft gluons from strlng theory [Klose, McLoughlin, Nandan, Pletka & Travaglini;
Volovich, Wen & Zlotnikov; Di Vecchia, Marotta & Mojazal5 ]/
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Theoretic Framework & Method in sy(n) x SU(N) » SUN)

® Lagrangian for NLSM with Cayley parameterization

F? o) 1 n
L= TTr(@,,U@“UT) U=1+ 2; (ﬁ(b)

> Vertices: Vona1 = (3—) Odd-point amplitude vanishes in NLSM

Vinis = (52 ) (zmm) - (5m)’ (zpm)

® Color-like (Flavor) Decomposition: [Kampf, Novotny & Trnka, 2015]

MU vm® = Y0 T 0% A(ll50)

OESH_1
® Berends-Giele recursion for NLSM with
J(2,....2n)
2m—1
= o Z > iVom(pr = —Pogn. Pay.- o+ Pay, ) x || 7(Ar)
2,21 ;=2 Divisions k=1

> Divisions: all possible divisions of on-shell particles

™
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Soft Behaviors of the off-shell currents & on-shell limits:

® Single soft behaviors (t parameterizes the soft momentum)

T im 1,50 41,...,2 g tiseven) L o
B - T}
(2,...,4—1,4,i+1,...,2n) (522) J(2,....i—1)J(i+2,...,2n) (iis odd) |

2
Taking on-shell limit P2,2n — 0. . )
Soft Limit and on-shell limit can be exchanged > Adler Zero
> Boundary case: Soft particle adjacent to the off-shell line .7(?) (2.3

2 2

7 7

2

Y

: , HMatches the “even” case;
d‘}-{.A S O o1 Flnductive proof from

Berends-Giele recursion

’ “ s, Aow)
> QOther cases: The even/odd soft particle non-adjacent to the off-shell line
{41} {A1} 2 # Inductive assumption for lower-point
O A4} 4 .
.. ) ARy @LZZ off-shell currents
. >, # Results of boundary case should be
~ ’ _ used during the inductive proof
-------------- g 1 Y {4,141 | R -
. Q g6 Ay} A # In “i is even” condition, the first 2
55 diagrams cancel each other
B { # dd” cond he f
< ..' . ) 2 +2 s o ) .. .
Q o Q (A1} Q - In “i is odd” condition, the first 2
{Azn} {Aan} n cancel out, the last gives non-zero tery
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Adjacent Double Soft Behaviors of the off-shell currents-1

® Consider two soft Goldstone bosons which are near each other

® Boundary case: One of the soft particles adjacent to the off-shell line

ie. J(2,3,4,..., 2n) with 2 and 3 as soft particles

/ 7

_ kg - p Q@ Jg"
) [“’ V- + 0P ha- 0+ a)

7§

..{A2}

v {Aanr}

o

# Inductive proof via Berends-Giele recursion

while considering different divisions (6 types)

#H Single soft limit results list on the previous

page should be used

/
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Adjacent Double Soft Behaviors of the off-shell currents-2

® Other cases: the soft particles non-adjacent to the off-shell line

J(2, R 1,”;,:, z'/-l\—/]_, 1+ 2,..., 2n) Expressions of these two operators, see next page

=¢0(2,...,z'—1,i+2,...,2n)+f,—1[ (2,...i—1,i+2,...,2n)

n (1#) J(l)(2,,7/—3-’;/2{_(/7/+2)72n) (’I,lS even ) +O(T2)
(W J2,...,i—1)JW(G+1,i4+2,...,2n) (iis odd)
Lt A (A1) ()

V), {422} V1, (A2}

i {421, 20,20+ 1} 1 F {21,201, Ag;}

4 “{Az) 1A} / “{ Az}
{Aopr41} {.A2;\1+1} {Aorrs1}
{A1}
# Inductive proof via .{fh} ) N {Agy)
Berends-Giele recursion S \

# Single soft results and o
5 57 - (AL 2121+ 1, AR
boundary case results - {A% 120,20+ 1L Af )} f - 145,20, 204 1, Ay

should be applied during

ST 4y) "l

{..A‘ZA:\[_FI} {AQ.‘\[+1} /

the proof

-
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On-shell Limits of the Adjacent Double Soft Behaviors

® Boundary case: Notice the orders in taking soft and on-shell limits:

> While taking the on-shell limit of the off-shell leg P}, — 0 after deriving the
soft limits, there 1s a 0/0 1lled form

> In the boundary case, the on-shell limit should be imposed first, then the soft
limits

® Other cases: soft and on-shell limits can be exchanged

® With a careful treatment, the double soft behaviors of the amplitudes in
the NLSM can be achieved as

A(L,... 37 +1,....2n) = (TOSZ(-(;)_I_I + frlgﬁ)ﬂ) AL, i—1i42,...,2n) + O(r?)
< _ (_ L \L[kici-(P—q)  Fir2-(a—p) g0 _ g0)
S 2F2 ) 2 |kici-(p+4q@)  kiv2- (¢+p) z(’Sl 7J(’;J)rl
1y 1 ) l ki—1-q Kito - p ] Y. =S5
S;ii1 = | —==5 : 4 1,2+1 7,i+1
Y= (~3m) 00 |G P T P
1 Pplv v 4. Pv ;w] v — 9 v 0O
N . . T = K R
N ( 2F2> [’%’—1 -(p+q) St kiva - (p+ (1)‘77’+2 Okap Ok,

- /
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Non-Adjacent Double Soft Behaviors

o

® Two soft particles Do Not Share any common adjacent particle:

A1,2,...,i—1,%,i+1,...,20) =0+ 0O(7%), (B<i<2n-1)

® Two soft particles Share One common adjacent particle:

0+ O(1?) (n =2)

7! (2;‘2) k2-1();.)?+-q)A(2a 4,..., 2n) + 0(7'2) (n > 2)

A(’i,2,'§,4,...,2n)={

® The above Proof by Kleiss-Kuijf (KK) relation in NLSM

A(1,2,...,i—1,4,i4+1,...,2n) = > (-1)2""A (1, {a},i)
a€OP({2,....i—-1} J{i+1,...,.2n}T)

H# Those results can also be derived as before by Berends-Giele recursions in off-shell
currents and then take the on-shell limits

H# We have checked the results from two ways are identical




® Discussion and possible implementations

» Natural Question: can we derive the same sub-leading double soft
operators by PCAC? What kind of symmetry/physics insight does the

sub—leading operators indicate?

> Soft limits of Goldstone-boson amplitudes encode underlying patterns of
symm. breaking, which can also be implemented in N=8 SUGRA, where
the classical theory has global continuous E7(7) symm. broken to SU(8)

> We can use the scalar limits to test the candidate counter terms for high—
loop orders in N=8 SUGRA, in principle they should be E7(7)~

compatible and match the scalar soft limits factorization

> Only one 7—loop counter term D®R* pass the test of single and double

scalar limits up to 6-point

» Further tests are required for p8 g4 with more constraints: we are
working on the constraints from multi-scalar limits to test its E7(7)

compatibility




® Conclusions and Outlook

» We study the single gluon soft limit in QCD amplitude and the double
soft Goldstone bosons structures in NLSM all up to the sub-leading

order

> It’s quite interesting to discover the hidden (if exists) symmetry which

makes the sub-(sub-)leading soft behaviors universal

> It’s natural to ask: Multi-soft particles? Especially, to probe the coset of
the broken symm. in the NLSM and hidden E7(7) symmetry of N=38

SUGRA

» The sott behaviors constrain (partially) the candidate counterterms of
the N=8 SUGRA theory, to test the UV finite (if true) conjecture




Thanks!




Back-Up:
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® Bondi-van der Burg-Metzner-Sachs(BMS) symm. .

e Study of classical gravitational waves: Expected Poincaré symmetry enlarged by
BMS4 group

@ Acts at null infinity (Z¥) for asympt. flat space-times

o Coordinates: wu (retarded time), 7 (radius), =4 = {©, ¢} € S? at I+

ds? = &% g du? — 2% du dr + gap(dz? + U%du)(dz®? + UPdu)

Metric functions 3, V,U#, gap have fall-off conditions in 7

gup = r2(dO% +sin2 @ dg?) + O(r), B=0r2), L =), UA=0@r2)

r
@ BMS, group: Maps asymptotically flat space-times onto themselves

0'=0'0,9) ¢=¢(0,¢) v =K(0O,9)(u—a69)
Where (0, ¢) — (©’,¢) is conformal transformation on 5%
dO"” + sin® ©'d¢’* = K (O, ¢)*(d©? + sin® © d¢?)

@ For © =0 & ¢' = ¢ one has “supertranslations”: v = u — a(©, ¢) with a
general function (0, ¢).

- /
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® BMS, Algebra:

In standard complex coordinates z = €*® cot(©/2) conformal symmetry
generated by Virasoro generators ( “superrotations”)

Supertranslations generated by Ty, = 2" 2" 0y

Extended bmsy algebra (samich, Troessart]

[lla Tm,n] = —m Tm+l,n [l—la Tm,n] = N Tm,n-}—l

Poincaré subalgebra spanned by I_1,1l,l1;1_1,l0,l1  T0.0,Z0,1,T1,0, 711
Lorentz Translation

BMS, group maps gravitational wave solutions onto each other.

Claim: | Supertranslations = S((;O) Superrotations = Sg) [Cachazo, Strominger]

-




4 ™
® Soft-Limit in Pure—YM

S
o
o

n—1n—1

(b)

FIG. 1: Soft-gluon behaviour of pure-gluon amplitudes |

s” : soft particle

“1” : hard particles

On-Shell Gauge Invariance
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® Soft-Limit in Pure-YM

/ /
[ . : ,
o ) ’
7
0 > < ‘
0 ~ < )

@ (b)

D gto (g py) = S8y
SGs (k1,7'1) (""1, 1><1, 8)8 (ks,?"l)

r1, S
Sg)e_p(kun) = +[r1[ i] [1] 3] e*P(ks;r1) |

T1, 8
S i) =~ et i),

S e (k) = +[7_1[ ;] [1] s]

. [s+‘°(ks; ri) - [,.fl[f Zi,S]s) kf]




