Cosmological relaxation of the EW scale

Giuliano Panico

IFAE, Barcelona

'6th DaMeSyFla Team Meeting' Padova University – 4 September 2015

based on J.R. Espinosa, C. Grojean, G. P., A. Pomarol, O. Pujolàs, G. Servant arXiv:1506.09217

Introduction

The origin of the **Hierarchy problem** can be equivalently understood as the requirement that Higgs potential satisfies two conditions near the same point

- (i) a zero of the first derivative (local minimum)
- (ii) a zero of the second derivative (Higgs mass and EW scale much smaller than the overall scale, $m_h,v\ll\Lambda$)

In a generic potential a **fine-tuning** is required to obtain the two conditions simultaneously.

Introduction

"Classical" mechanisms to solve the Hierarchy problem

- ► New physics at the TeV scale stabilizes the EW scale (eg. low-scale Supersymmetry, Composite Higgs, ...)
 - Avoid condition (ii) by assuming that $\Lambda \sim v \sim m_h$
- ► Large **Landscape** with huge number of minima
 - Ensamble of realized vacua spans all possible EW scales
 - Anthropic selection of correct vacuum

Introduction

"Classical" mechanisms to solve the Hierarchy problem

- ► New physics at the TeV scale stabilizes the EW scale (eg. low-scale Supersymmetry, Composite Higgs, ...)
 - Avoid condition (ii) by assuming that $\Lambda \sim v \sim m_h$
- ► Large Landscape with huge number of minima
 - Ensamble of realized vacua spans all possible EW scales
 - Anthropic selection of correct vacuum

New solution

- ► "Relaxation" of the EW scale [Graham, Kaplan, Rajendran, 1504.07551] (see also earlier work by Abbott 85; Dvali, Vilenkin 04; Dvali 06)
 - condition (i) avoided by a potential with vacua "everywhere"
 (eg. oscillating function can have infinite set of minima)
 - "correct" minimum selected dynamically through a backreaction of EWSB

The "minimal" realization

Higgs mass parameter — Field-dependent Higgs mass

$$m^2|H|^2$$

$$\frac{m^2(\phi)|H|^2}{ ext{e.g. }m^2(\phi)=\Lambda^2\left(1-\frac{g\phi}{\Lambda}
ight)}$$

- ullet Higgs mass determined by the evolution of ϕ
- ϕ must be stabilized where $|m^2(\phi)| \ll \Lambda^2$
- \bullet this structure can arise from a "clever" dynamical interplay between H and ϕ

The potential generate an interplay between the Higgs h and an axion-like field $\boldsymbol{\phi}$

$$V(\phi, h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$

The potential generate an interplay between the Higgs h and an axion-like field ϕ

$$V(\phi, h) = \Lambda^3 g \phi + \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$

"Kicking" term

makes ϕ slide forward

The potential generate an interplay between the Higgs h and an axion-like field ϕ

$$V(\phi, h) = \Lambda^3 g \phi + \left(\frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda}\right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c}\right)^n \cos(\phi/f)\right)$$

 ϕ "scans" the Higgs mass

The potential generate an interplay between the Higgs h and an axion-like field ϕ

$$V(\phi, h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \left(\varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f) \right)$$

$$n = 1, 2, \dots$$

"self-regulating" term stops ϕ when h turns on (periodic function of ϕ as for axion-like states)

The potential generate an interplay between the Higgs h and an axion-like field ϕ

$$V(\phi,h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$

 Λ cut off of the theory

 Λ_c $\,$ scale at which the periodic term originates

Spurions:

- $g \ll 1$ breaking of the shift symmetry $\phi \rightarrow \phi + c$
- $arepsilon \ll 1$ further breaking of the shift symmetry, respecting $\phi \to 2\pi f$, $\phi \to -\phi$

$$V(\phi,h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda}\right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c}\right)^n \cos(\phi/f)$$

$$V(\phi,h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda}\right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c}\right)^n \cos(\phi/f)$$
 Higgs mass-squared turns negative (h) $\neq 0$

$$V(\phi, h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$

$$V(\phi, h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$

Cosmological evolution

$$V(\phi,h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$

• Notice that large field excursions for ϕ needed: $\phi \sim \Lambda/g \gg \Lambda$

$$V(\phi,h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$

How do we stop in the correct minimum? Should we **tune the initial conditions**?

How do we stop in the correct minimum? Should we **tune the initial conditions**?

No, if ϕ slow-rolls!

- possible if a friction is present
 (eg. during the inflationary epoch, through Hubble friction)
- $ightharpoonup \phi$ must "scan" large ranges of the Higgs mass, a long period of inflation is needed

e-folds needed:
$$N_e \gtrsim \frac{H_I^2}{q^2 \Lambda^2} \sim 10^{40}$$

Important constraint:

 ϕ must slow-roll **classically** so that quantum effects do not generate a large spreading

Which is the origin of
$$~arepsilon \Lambda_c^4 \left(rac{h}{\Lambda_c}
ight)^n \cos(\phi/f)$$
 ?

$$n=1$$
 axion term from **QCD condensate**: $\Lambda_c=\Lambda_{\rm QCD}$

$$m_u(h)\langle q\overline{q}\rangle\cos(\phi/f)$$

$$n = 1$$

axion term from **QCD condensate**: $\Lambda_c = \Lambda_{\rm QCD}$

$$m_u(h)\langle q\overline{q}\rangle\cos(\phi/f)$$

problem: too large $\theta_{\rm QCD} \sim 1$ due to linear tilt!

$$\Lambda^3 g \phi$$

can be solved if the tilt disappears after inflation

Low cut-off: $\Lambda \lesssim 30~{\rm TeV}$

m=2 gauge invariant, generated by new-physics at scale Λ_c (no need to rely on QCD)

$$\varepsilon \Lambda_c^2 |H|^2 \cos(\phi/f)$$

$$n = 2$$

(no need to rely on QCD)

$$\varepsilon \Lambda_c^2 |H|^2 \cos(\phi/f)$$

problem: quantum corrections from Higgs loop

$$\varepsilon \Lambda_c^4 \cos(\phi/f)$$

"Relaxation" only works if Higgs barrier dominates

$$\Lambda_c \lesssim v$$

New-dynamics must be around the EW scale!

$$n = 2$$

gauge invariant, generated by new-physics at scale Λ_c (no need to rely on QCD)

$$\varepsilon \Lambda_c^2 |H|^2 \cos(\phi/f)$$

New-physics at the LHC is still required though it arises from an "unusual" motivation (needed to generate the periodic potential)

Extra drawback: "coincidence problem" why $\Lambda_c \sim v$?

Can we make the new-physics scale larger?

Raising the cut-off

Add an additional field σ "modulates" the periodic potential

Field-dependent amplitude

$$A\cos(\phi/f)$$
 \longrightarrow $A(\phi, \sigma, H) = \varepsilon \Lambda^4 \left(\beta + c_\phi \frac{g_\phi}{\Lambda} - c_\sigma \frac{g_\sigma \sigma}{\Lambda} + \frac{|H|^2}{\Lambda^2}\right)$

Two "scanners" potential

$$V(\phi, \sigma, H) = \Lambda^4 \left(\frac{g\phi}{\Lambda} + \frac{g_\sigma \sigma}{\Lambda} \right) + m^2(\phi)|H|^2 + A(\phi, \sigma, H)\cos(\phi/f)$$

Add an additional field σ "modulates" the periodic potential

Field-dependent amplitude

$$A\cos(\phi/f) \longrightarrow A(\phi,\sigma,H) = \varepsilon \Lambda^4 \left(\beta + c_\phi \frac{g_\phi}{\Lambda} - c_\sigma \frac{g_\sigma\sigma}{\Lambda} + \frac{|H|^2}{\Lambda^2}\right)$$

spurions

Two "scanners" potential

$$V(\phi, \sigma, H) = \Lambda^4 \left(\frac{g\phi}{\Lambda} + \frac{g\sigma\sigma}{\Lambda} \right) + m^2(\phi)|H|^2 + A(\phi, \sigma, H)\cos(\phi/f)$$

Add an additional field σ "modulates" the periodic potential

Field-dependent amplitude

$$A\cos(\phi/f)$$
 \longrightarrow $A(\phi, \sigma, H) = \varepsilon \Lambda^4 \left(\beta + c_\phi \frac{g\phi}{\Lambda} - c_\sigma \frac{g_\sigma \sigma}{\Lambda} + \frac{|H|^2}{\Lambda^2}\right)$

Two "scanners" potential

$$V(\phi, \sigma, H) = \Lambda^4 \left(\frac{g\phi}{\Lambda} + \frac{g_\sigma \sigma}{\Lambda} \right) + m^2(\phi)|H|^2 + A(\phi, \sigma, H)\cos(\phi/f)$$

ullet We take $\Lambda \sim \Lambda_c$ and see how much we can push it up

$$V(\phi, \sigma, H) = \Lambda^4 \left(\frac{g\phi}{\Lambda} + \frac{g_\sigma \sigma}{\Lambda} \right) + m^2(\phi)|H|^2 + A(\phi, \sigma, H)\cos(\phi/f)$$
$$A(\phi, \sigma, H) = \varepsilon \Lambda^4 \left(\beta + c_\phi \frac{g\phi}{\Lambda} - c_\sigma \frac{g_\sigma \sigma}{\Lambda} + \frac{|H|^2}{\Lambda^2} \right)$$

$$\begin{split} V(\phi,\sigma,H) &= \Lambda^4 \left(\frac{g\phi}{\Lambda} + \frac{g_\sigma\sigma}{\Lambda} \right) + m^2(\phi) |H|^2 + A(\phi,\sigma,H) \cos(\phi/f) \\ &\quad A(\phi,\sigma,H) = \varepsilon \Lambda^4 \left(\beta + c_\phi \frac{g\phi}{\Lambda} - c_\sigma \frac{g_\sigma\sigma}{\Lambda} + \frac{|H|^2}{\Lambda^2} \right) \end{split}$$

 $\textbf{Stage I:} \ \phi \ \text{``frozen''}$

$$V(\phi, \sigma, H) = \Lambda^4 \left(\frac{g\phi}{\Lambda} + \frac{g_\sigma \sigma}{\Lambda} \right) + m^2(\phi) |H|^2 + A(\phi, \sigma, H) \cos(\phi/f)$$

$$A(\phi, \sigma, H) = \varepsilon \Lambda^4 \left(\beta + c_\phi \frac{g\phi}{\Lambda} - c_\sigma \frac{g_\sigma \sigma}{\Lambda} + \frac{|H|^2}{\Lambda^2} \right)$$

Stage II: ϕ "tracks" σ

The cosmological evolution

$$V(\phi, \sigma, H) = \Lambda^4 \left(\frac{g\phi}{\Lambda} + \frac{g_\sigma \sigma}{\Lambda} \right) + m^2(\phi)|H|^2 + A(\phi, \sigma, H)\cos(\phi/f)$$

$$A(\phi, \sigma, H) = \varepsilon \Lambda^4 \left(\beta + c_\phi \frac{g\phi}{\Lambda} - c_\sigma \frac{g_\sigma \sigma}{\Lambda} + \frac{|H|^2}{\Lambda^2} \right)$$

Stage III: ϕ enters the minimum

The cosmological evolution

$$\begin{split} V(\phi,\sigma,H) &= \Lambda^4 \left(\frac{g\phi}{\Lambda} + \frac{g_\sigma\sigma}{\Lambda} \right) + m^2(\phi) |H|^2 + A(\phi,\sigma,H) \cos(\phi/f) \\ &\quad A(\phi,\sigma,H) = \varepsilon \Lambda^4 \left(\beta + c_\phi \frac{g\phi}{\Lambda} - c_\sigma \frac{g_\sigma\sigma}{\Lambda} + \frac{|H|^2}{\Lambda^2} \right) \end{split}$$

Stage IV: ϕ stabilized

The cosmological evolution

Potential for ϕ in the four stages:

Constraints

- ullet $arepsilon \lesssim v^2/\Lambda^2$ keep under control quantum corrections
- ullet $H_I^3 \lesssim g_\sigma \Lambda^3$ avoid quantum effects spoiling classical rolling
- $\bullet \ g_{\sigma} \lesssim g \qquad \qquad \text{allow ϕ tracking σ}$
- \bullet $\Lambda^2/M_{Pl}\lesssim H_I$ avoid backreaction of ϕ and σ on inflation

Stabilization of the EW scale: $v^2 \simeq \frac{g\Lambda f}{\varepsilon}$

upper bound on the cut-off

$$\Lambda \lesssim (v^4 M_{Pl}^3)^{1/7} \simeq 2 \times 10^9 \text{ GeV}$$

UV origin of the periodic term

Axion potential: $V \simeq \Lambda^3 m_N \cos(\phi/f)$

Gives the needed potential if the mass of N is given by

$$m_N \simeq arepsilon \left(\Lambda + g_\sigma \sigma + g \phi - rac{|H|^2}{\Lambda}
ight)$$
 from integrating a fermion doublet L

Phenomenological implications

- No state detectable at the LHC
- $ightharpoonup \phi$ and σ are the only BSM states below Λ light scalars weakly-coupled to the SM

$$m_{\phi} \sim 10^{-20} - 10^2 \text{ GeV}$$

 $m_{\sigma} \sim 10^{-45} - 10^{-2} \text{ GeV}$

mixing to the SM through the Higgs:

$$|H|^2\cos\phi/f$$
, $g\phi|H|^2$

• Bechmark values for $\Lambda \sim 10^9~{\rm GeV}$

$$\begin{split} m_\phi \sim 100 \text{ GeV} & m_\sigma \sim 10^{-18} \text{ GeV} \\ \theta_{\phi h} \sim 10^{-21} & \theta_{\sigma h} \sim 10^{-50} \\ \phi \phi h h \text{ coupling} \sim 10^{-14} \end{split}$$

Cosmological consequences

Many constraints from cosmology

dark matter overabundance, late decays, BBN bounds, $\gamma\text{-rays},$ CMB, pulsar timing observations, ...

ightharpoonup Oscillations of σ can provide a **Dark Matter candidate**

$$\rho_{\sigma}(T) \sim \rho_{ini}^{\sigma}(T/T_{osc})^3 \quad \Longrightarrow \quad \Omega_{\sigma} \gtrsim \left(\frac{10^{-27}}{g_{\sigma}}\right)^{3/2} \left(\frac{\Lambda}{10^8 \text{ GeV}}\right)^{13/2}$$

Parameter space

Constraints on the parameter space

Conclusions

The "Relaxation" models provide an "existence proof" of natural theories with a high cut-off scale $(\Lambda \sim 10^9~{\rm GeV})$

Good features:

Change of paradigm

- new physics is given by weakly-coupled light states
- not detectable at high-energy collider experiments

Other type of experiments needed

• astrophysics (γ -rays, pulsar timing, ...), CMB, fifth-force searches, ...

Ugly features:

Huge number of inflation e-folds $N_e > 10^{38}$ Super-Planckian field excursions

Conclusions

Future directions:

- ▶ Are there ways to avoid the limit on the cut-off $\Lambda \lesssim 10^9 \; \mathrm{GeV}$?
- UV completion? How to get the double breaking of the shift symmetry in the "axion" potential?

[see Gupta, Komargodski, Perez and Ubaldi, arXiv:1509.00047, Batell, Giudice, McCullough, arXiv:1509.00834]

- lacktriangle Find suitable inflationary models with huge N_e
- ► Alternative sources of friction, disentangling the "relaxation" mechanism from inflation
 - proposal to do this at finite temperature, see talk by Hardy