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Snowmass Higgs mass and width resolution projections

Randle-Conde 1504.04302, based on Dawson et al 1310.8361
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Theory calculations will need to keep up with future

experimental results.

Ultimate goal: make pure theory uncertainties

completely insignificant, so that all errors can be blamed

on experimentalists.
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This talk:

• “Higgs boson mass in the Standard Model at two-loop order and

beyond” with D.G. Robertson, 1407.4336

State-of-the-art calculation of Standard Model Higgs boson

mass. Public computer code SMH implements results.

See also Bezrukov, Kalmykov, Kniehl, Shaposhnikov 1205.2893 and Degrassi, Di Vita,

Elias-Miro, Espinosa, Giudice, Isidori, Strumia 1205.6497 and Buttazzo, Degrassi,

Giardino, Giudice, Sala, Salvio, Strumia 1307.3536

• “Z boson pole mass at two-loop order in the pure MS-bar

scheme”, 1505.04833

• “Pole mass of the W boson at two-loop order in the pure MS-bar

scheme”, 1503.03782
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The pure MS scheme:

• Input parameters are λ, g, g′, g3, yt, and the Higgs VEV v.

• Output parameters are pole masses Mh, MW , MZ , Mt, and

other parameters Gµ, . . .

This is an alternative to the on-shell and hybrid schemes, which use

some or all of Gµ, ∆α, MZ , ΓZ , αS , Mt, Mh as the input

parameters. Calculations in on-shell scheme have already gone

beyond 2-loop order. See other talks for (many) references.

Why should we want calculations in an alternative scheme?
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“Let a hundred flowers bloom”

–Chairman Mao

If nothing else, an additional handle on theoretical error estimates.

As a matter of opinion, I believe the pure MS scheme is

conceptually simpler, and in principle may be more easily pushed to

higher orders, and to extensions of the Standard Model.

Principle and practice are two different things. . .
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Definition of the Higgs VEV v(Q): the minimum of the effective
potential in Landau gauge.

Current state-of-the-art of the Landau gauge Standard Model effective potential:

• 2-loop: Ford, Jack and Jones hep-ph/0111190. (Paper actually from 1992.)

• 3-loop QCD and top Yukawa: SPM 1310.7553

Terms proportional to g43y
4
t and g23y

6
t and y8t .

These contributions change VEV by about 350 MeV, depending on choice of Q.

• Resummation of Goldstone boson contributions: SPM 1406.2355,

J. Elias-Miro, J. R. Espinosa and T. Konstandin 1406.2652

Conceptually significant, numerically small.

Leads to much simpler formulas!
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At least two other definitions of the VEV are commonly in use:

• VEV = vtree = minimum of the tree-level potential. Drawbacks:

– Need to include tadpole diagrams.

– Expansion parameter for top loops is
Ncy

4
t

16π2λ
rather than

Ncy
2
t

16π2
. Converges more slowly.

• VEV = value that makes Feynman gauge Higgs tadpole vanish.

Drawback:

– Feynman gauge effective potential is much more complicated,

not even known at 2-loop order.

Care is needed when comparing results of different groups.
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The complex pole mass

spole = M2 − iΓM

is a physical observable. Does not depend on gauge-fixing or renormalization.

However, for V = W,Z , the real part is slightly smaller than the Breit-Wigner

masses that are usually quoted by experiment:

MV = M exp
V (1− Γ2

V /2M
2
V + . . .)

So, the real parts of the pole masses are, experimentally:

MZ = M exp
Z − 34.1 MeV = 91.1535± 0.0021 GeV,

MW = M exp
W − 27 MeV = 80.358± 0.015 GeV.
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2-loop Higgs pole mass

Obtained from the 2-loop self-energy function:

Π(s) =
1

16π2
Π(1)(s) +

1

(16π2)2
Π(2)(s)

Sum of all 1-particle irreducible 2-point Feynman diagrams with

d = 4− 2ǫ.

No counterterm diagrams! Instead, calculate in terms of bare

quantities λB , ytB , gB , g′B , g3B , m2
B , vB . Then, just re-express in

terms of MS quantities.

No tadpole diagrams! They sum to 0 automatically, by the

definition of the VEV. Must use Landau gauge only.
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Results are reduced to the Tarasov (hep-ph/9703319) basis of scalar integrals:
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x, y, z, u, v are squared masses.

These are in turn evaluated by the TSIL computer library, SPM and D.G.

Robertson hep-ph/0501132, using the differential equations methods.
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Complete list of basis integrals needed:

I
(1) =

{

B(t, t), B(h, h), B(W,W ), B(Z,Z), A(t), A(h), A(W ), A(Z)
}

I
(2) =

{

M(h, h, h, h, h), U(h, h, h, h), S(h, h, h), M(h,Z, h, Z, Z), U(h, h, Z, Z),

M(W,W,W,W, h), U(W,W,W, h), S(h,W,W ), T (W,W, h), M(Z,Z,Z, Z, h),

U(Z,Z,Z, h), S(h,Z, Z), T (Z,Z, h), M(W,W,W,W,Z), U(W,W,W,Z),

S(W,W,Z), T (W,W,Z), T (Z,W,W ), M(W,Z,W,Z,W ), U(Z,Z,W,W ),

M(h,W, h,W,W ), U(h, h,W,W ), M(t, t, t, t, Z), U(t, t, t, Z), S(t, t, Z),

T (t, t, Z), T (Z, t, t), M(t, t, t, t, h), U(t, t, t, h), S(h, t, t), T (t, t, h),

M(t, Z, t, Z, t), U(Z,Z, t, t), M(t, h, t, h, t), U(h, h, t, t), M(t,W, t,W, 0),

U(W,W, 0, t), U(t, t, 0,W ), S(0, t,W ), T (W, 0, t), T (t, 0,W ), M(t, t, t, t, 0),

T (t, 0, t), T (0, t, t), M(W,W,W,W, 0), T (W, 0,W ), T (0,W,W ), U(W,W, 0, 0),

S(0, 0,W ), T (W, 0, 0), U(Z,Z, 0, 0), S(0, 0, Z), T (Z, 0, 0), I(h, h, h), I(t, t, Z),

I(h, t, t), I(W,W,Z), I(h,W,W ), I(h,Z, Z), I(0, t,W ), I(0, h,W ),

I(0, h, Z), I(0,W, Z), I(0, 0,W ), I(0, 0, Z), I(0, 0, h), I(0, 0, t)
}

.

TSIL: the 38 integrals in red have to be done numerically. The others reduce to

polylogs. All necessary integrals obtained in a fraction of a second (total) on

modern hardware, with relative accuracy < 10−10.

12



Final result for 2-loop pole mass:

M2
h − iΓhMh = 2λv2 +

1

16π2
∆

(1)

M2
h

+
1

(16π2)2

[

∆
(2),QCD

M2
h

+∆
(2),non−QCD

M2
h

]

,

This is a function of: v, λ, yt, g, g′, g3, Q.

Explicit 1-loop part:

∆
(1)

M2
h

= 3y2t (4t− s)B(t, t)− 18λ2v2B(h, h)

+
1

2
(g2 + g′2)

[

(s− 3Z − s2/4Z)B(Z,Z)− sA(Z)/2Z + 2Z
]

+g2
[

(s− 3W − s2/4W )B(W,W )− sA(W )/2W + 2W
]

,

For s, plug in real part M2
h , and solve by iteration.

Imaginary part iΓhMh is numerically negligible; makes a difference of order 1 MeV

in Mh. The same is true for the bottom Yukawa coupling.
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Explicit 2-loop QCD part:

∆
(2),QCD

M2
h

= g23y
2
t

[

8(4t− s)(s− 2t)M(t, t, t, t, 0) + (36s− 168t)T (t, 0, t)

+16(s− 4t)T (0, t, t) + 14sB(t, t)2 + (−176 + 36s/t)A(t)B(t, t)

+(80t− 36s)B(t, t)− 28A(t)2/t + 80t− 17s
]

.

2-loop non-QCD part is much more complicated:

∆
(2),non−QCD

M2
h

=
∑

i

c
(2)
i I

(2)
i +

∑

j≤k

c
(1,1)
j,k I

(1)
j I

(1)
k +

∑

j

c
(1)
j I

(1)
j + c(0).

The coefficients c
(2)
i and c

(1,1)
j,k and c

(1)
j and c(0) are available in

electronic form in a file called coefficients.txt. They are

ratios of polynomials in v, λ, yt, g, and g′.
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Leading 3-loop contributions to Mh

In the approximation M2
h ≪ M2

t , the self-energy function is given by derivatives

of the effective potential, and

δM2
h =

[

∂2

∂v2
−

1

v

∂

∂v

]

δVeff .

Using 3-loop resummed effective potential involving top quark:

∆M2
h =

1

(16π2)3

[

∆
(3),leading QCD
M2

h

+∆
(3),leading non-QCD
M2

h

]

where

∆
(3),leading QCD
M2

h

= g43y
2
t t

[

248.1 + 839.2ln(t) + 160ln
2
(t)− 736ln

3
(t)

]

+g23y
4
t t

[

2764.4 + 1283.7ln(t)− 360ln
2
(t) + 240ln

3
(t)

]

,

and similarly for non-QCD part.

Here ln(X) ≡ ln(X/Q2).
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RG dependence of computed pole mass Mh. Run all input
parameters from Mt to Q.

100 150 200 250
Renormalization scale Q  [GeV]

124

125

126

H
ig
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s 
 M

h  [
G

eV
]

At Q = 173.34 GeV: λ = 0.12597

yt = 0.93690

g3 = 1.1666
g = 0.647550
g’= 0.358521

v = 246.647 GeV Green dotted: tree-level

Orange short dashed: 1-loop

Red long-dashed: 1-loop +
2-loop QCD

Blue solid: 2-loop

Black solid: 2-loop + leading 3-loop
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Closeup of RG dependence of computed pole mass Mh:

100 150 200 250
Renormalization scale Q  [GeV]

124.9

125.0

125.1

125.2

125.3

H
ig

gs
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m
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 M

h  [
G

eV
]

At Q = 173.34 GeV: λ = 0.12597

yt = 0.93690

g3 = 1.1666
g = 0.647550
g’= 0.358521

v = 246.647 GeV

Blue: 2-loop

Black: 2-loop + leading 3-loop

Left dot: scale Q at which
M2

h = 2λv2

Right dot: scale Q2 = t = y2t v
2/2

From RG scale dependence, theory error is arguably well unde r 100 MeV.

Does not include parametric errors from experimental Mt, αS , etc.
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The inverse question: given Mh, what is the self-coupling λ ?

100 150 200 250
Renormalization scale Q  [GeV]

0.1200
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0.1300

0.1350
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At Q = 173.34 GeV:

Mh = 125.089 GeV

yt = 0.93690
g3 = 1.1666

g = 0.647550
g’= 0.358521

v = 246.647 GeV

100 150 200 250
Renormalization scale Q  [GeV]

0.999

1.000

1.001

λ M
h/λ

ru
n

At Q = 173.34 GeV:

Mh = 125.089 GeV

yt = 0.93690
g3 = 1.1666

g = 0.647550
g’= 0.358521

v = 246.647 GeV

Left panel: λMh
(Q) as determined from the fixed pole mass Mh, calculated at Q.

Right panel: Compare λMh
(Q) obtained at Q to λrun(Q) obtained by running it

from Mt to Q.

Scale dependence is well under 0.1%, for a reasonable range of Q.
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Public software code implementation: SMH (with D.G. Robertson)

Library functions for inclusion in your own C, C++ or Fortran code:

• SMH RGrun runs λ, yt, g3, g, g′, v, m2 from scale Qinitial to Qfinal.

• SMH Find vev minimizes Veff to find v , given m2, λ, yt, g3, g, g′, Q.

• SMH Find m2 minimizes Veff to find m2 , given v, λ, yt, g3, g, g′, Q.

• SMH Find Mh Computes Mh , given λ, v, yt, g3, g, g′, Q.

• SMH Find lambda Computes λ , given Mh, v, yt, g3, g, g′, Q.

Command line versions of these also exist:
$ ./calc_Mh 0.126 246.6 0.937 1.167 0.648 0.359 173.3 3

(* SMH(iggs) Version 1.01 *)

Mh(loops = 3.0) = 125.074162

Total calculation time (s): 0.382756
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The loop order can be chosen at run time from:

0 tree level

1 1-loop

1.5 1-loop plus 2-loop QCD

2 2-loop

2.5 2-loop plus leading 3-loop QCD

3 2-loop plus leading 3-loop

For much more information, see the README.txt file provided

with SMH.

Coming soon: inclusion of Z,W, t pole masses in pure MS scheme.
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In 1505.04833, did a similar calculation of the Z boson complex pole mass

M2
Z − iΓZMZ .
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1-loop
QCD 2-loop
full 2-loop

At Q = 173.34 GeV:

λ = 0.12597,

yt = 0.93690, g3 = 1.1666

g = 0.647550,
g’= 0.358521,
v = 246.647 GeV,
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Renormalization scale Q  [GeV]

2.45

2.50
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Z
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] At Q = 173.34 GeV:

λ = 0.12597,
yt = 0.93690, g3 = 1.1666

g = 0.647550,
g’= 0.358521,
v = 246.647 GeV,

1-loop

full 2-loop

QCD 2-loop

Recall that the usual experimental Breit-Wigner mass M exp
Z is larger than this by

34.1 MeV, so with these benchmark parameters, M exp
Z = 91.1876 GeV.

Scale dependence of MZ is ±2 MeV from median value over the range

70 GeV < Q < 200 GeV, but I believe the true theory error is likely worse.
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In 1503.03782, did the same calculation for the W boson pole mass

M2
W − iΓWMW .
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At Q = 173.34 GeV:

λ = 0.12597,

yt = 0.93690, g3 = 1.1666

g = 0.647550,
g’= 0.358521,
v = 246.647 GeV,
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] At Q = 173.34 GeV:

λ = 0.12597,
yt = 0.93690, g3 = 1.1666

g = 0.647550,
g’= 0.358521,
v = 246.647 GeV,

1-loop

full 2-loop

QCD 2-loop

Scale dependence for both MW and ΓW is roughly ±4 MeV from their median

values, but again I believe this is partly accidental, and true theory uncertainty is

higher.
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An amusing fact: the 2-loop QCD contributions have a larger scale

dependence , but a smaller magnitude , than the 2-loop non-QCD

effects.

This is partly, but not entirely, due to a 1% “fine-tuning”:

39− 4π2 = −0.478 . . .

in the leading non-logarithmic QCD term expanded in the limit of

large top mass, which would naively be expected to give the largest

contribution.
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Comparisons to other multi-loop calculations of MW ?
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In on-shell or hybrid schemes, earlier calculations of W mass go beyond 2-loop

order to include some 3-loop effects:

Awramik, Czakon, Freitas, Weiglein 0311148

DeGrassi, Gambino, Giardino 1411.7040

Uses Feynman gauge definition of VEV.

In the pure MS scheme, there are two earlier 2-loop calculations, but they are

very difficult to compare to mine:

Jegerlehner, Kalmykov, Veretin 0105304, 0212319

Kniehl, Pikelner, Veretin 1503.02138

Both use VEV defined as minimum of tree-level potential. For large top masses,

due to tadpole effects, their loop expansion parameter is effectively

Ncy
4
t

16π2λ
.
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Boson pole mass results in pure MS scheme:

• Mh: Full 2-loop, plus 3-loop α2
Sαt and αSα

2
t and α3

t in the

approximation M 2
h/M

2
t ≪ 1. Scale dependence: ±50 MeV.

• MW , MZ Full 2-loop. Scale dependence: ±4 MeV.

• True theory errors are likely larger.

• Perhaps adequate for LEP+LHC data, but not for FCCee (or

other future lepton colliders).

• Need 3 loops, at least.

• Not obvious that 3-loop QCD-enhanced contributions will

dominate over non-QCD. That did not happen at 2-loop order!

QCD part has larger scale dependence but smaller magnitude.

Thank you!
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Backup slides:
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vtreev

Veff

H

v = true minimum of Veff , gives

better perturbation expansion than

expanding around vtree.

Condition for sum of tree tadpole + radiative tadpoles to vanish: ∂
∂v

Veff(v) = 0.

If one chooses to expand around vtree instead, then one can maintain general

gauge fixing, but must include tadpole graphs:

yt

yt

1/(p2 +m2
h) =

1
2λv2

with expansion parameter (Ncy
4
t /16π

2λ)L at loop order L.
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Complex pole squared mass

spole ≡ M 2
h − iΓhMh

is the solution of:

spole = m2
B + 3λBv

2
B +

1

16π2
Π(1)(spole) +

1

(16π2)2
Π(2)(spole).

In principle this is gauge invariant, but we compute it in Landau

gauge, because only in that gauge do we know 2-loop relation of

VEV to other parameters.

Expand the solution spole in a series in 1/ǫ.

Renormalizability says 1/ǫ poles will cancel.
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Relations between MS and bare quantities, for example:

v2B = µ−2ǫv2
[

1 +
1

16π2

cφ1,1
ǫ

+
1

(16π2)2

(cφ2,2
ǫ2

+
cφ2,1
ǫ

)

+ . . .
]

,

λB = µ2ǫ
[

λ+
1

16π2

cλ1,1
ǫ

+
1

(16π2)2

(cλ2,2
ǫ2

+
cλ2,1
ǫ

)

+ . . .
]

,

ytB = µǫ
[

yt +
1

16π2

cyt1,1
ǫ

+ . . .
]

,

gB = µǫ
[

g +
1

16π2

cg1,1
ǫ

+ . . .
]

, etc.

Dimensional regularization scale µ is related to MS scale Q by:

Q2 = 4πe−γEµ2

Counterterms cXij are known already from beta functions and Higgs anomalous

dimension. Cancellations of 1/ǫ poles provides a check!
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Examples:

cφ1,1 = −3y2t +
9

4
g2 +

3

4
g′2,

cφ2,2 = 12g23y
2
t −

9

4
y4t −

27

8
y2t g

2 −
1

8
y2t g

′2 −
33

32
g4 +

27

16
g2g′2 +

91

32
g′4,

cφ2,1 = −10g23y
2
t +

27

8
y4t −

45

16
y2t g

2 −
85

48
y2t g

′2 +
271

64
g4

−
9

32
g2g′2 −

431

192
g′4 − 3λ2,

cλ1,1 = −3y4t + 6λy2t + 12λ2 −
9

2
λg2 −

3

2
λg′2 +

9

16
g4 +

3

8
g2g′2 +

3

16
g′4,

etc.
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Checks:

• All 1/ǫ and 1/ǫ2 terms cancel in spole = M2
h − iΓhMh.

• Some individual coefficients c
(2)
i and c

(1,1)
j,k are singular in the formal limits

g, g′ → 0 or λ → 0, but the whole expression is well-behaved, due to

redundancy relations for basis integrals when squared mass arguments

approach 0.

• Logs of m2
G cancel when Goldstone boson contributions resummed.

• Cancellations between Landau gauge vector propagators with poles at

squared mass equal to 0 and the corresponding Goldstone propagators.

• Imaginary part −iΓhMh checks precisely with 3-body decay

widths Γ(h → Wff
′
) and Γ(h → Zff) , from Keung and Marciano, 1984.
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Checks (continued):

• M2
h is renormalization group scale invariant through terms of 2-loop order. In

principle, equivalent to the 1/ǫ check, but in practice tests the validity of many

intermediate steps.

0 = Q
d

dQ
M2

h =

[

Q
∂

∂Q
− γφv

∂

∂v
+
∑

X

βX

∂

∂X

]

M2
h ,

where X = {λ, yt, g, g
′, g3}.

If one puts an arbitrary coefficient in front of each Feynman d iagram, the

checks above are enough to fix most of them to be unity!
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Motivation for SUSY people: the effective field theory approach to Mh

Mg̃

Mt̃2

Mt̃1

MSUSY (arbitrary): threshold corrections

Mtop: Calculate Mh pole mass here.

Standard Model RG running

My opinion: this is clearly the best way forward for Mh in SUSY.

Modular approach, needs Mh computation in the Standard Model .
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Might need modification, perhaps:

Mg̃

MQ̃

Mt̃1
Mt̃1

MH̃

Mtop: Calculate Mh pole mass here.

Standard Model RG running

Effective Theory RG running

Effective Theory RG running
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