

First FCC-ee mini-workshop on Precision Observables and Radiative Corrections

Predicting SUSY from SM precision physics

Giovanni Villadoro

based on: Javier Pardo Vega and GV arXiv:1504.05200

Probing NP with Precision Physics

Probing NP with Precision Physics

Probing NP with Precision Physics

2

The case of SUSY

Poincaré
$$\rightarrow$$
SUSY $\begin{cases} [\mathcal{P}, \mathcal{P}] = \mathcal{P} \\ [\mathcal{P}, \mathcal{S}] = \mathcal{S} \\ \{\mathcal{S}, \mathcal{S}\} = \mathcal{P} \end{cases}$

Poincaré
$$\rightarrow$$
SUSY $\begin{bmatrix} [\mathcal{P}, \mathcal{P}] = \mathcal{P} \\ [\mathcal{P}, \mathcal{S}] = \mathcal{S} \\ \{\mathcal{S}, \mathcal{S}\} = \mathcal{P} \end{bmatrix}$

1

Remarkable features in QFT: CFT, Dualities, Finiteness, L.P., etc...

Poincaré
$$\rightarrow$$
SUSY $\begin{bmatrix} [\mathcal{P}, \mathcal{P}] = \mathcal{P} \\ [\mathcal{P}, \mathcal{S}] = \mathcal{S} \\ \{\mathcal{S}, \mathcal{S}\} = \mathcal{P} \end{bmatrix}$

Remarkable features in QFT: CFT, Dualities, Finiteness, L.P., etc...

...and in QG: Supergravity, String Theory

$\mathcal{P}|0\rangle = 0 \qquad \mathcal{S}|0\rangle \neq 0$

SUSY breaking scale?

$\mathcal{P}|0\rangle = 0 \qquad \mathcal{S}|0\rangle \neq 0$

SUSY breaking scale?

 $\delta m_h^2 \sim m_{\rm SUSY}^2$

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015 $\sqrt{s} = 7, 8 \text{ TeV}$							
	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	¹] Mass limit	Reference
	MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}^{0}_{1}$	0 0	2-6 jets 2-6 jets	Yes Yes	20.3 20.3	\tilde{q}, \tilde{g} 1.7 TeV $m(\tilde{q}) = m(\tilde{g})$ \tilde{q} 850 GeV $m(\tilde{\chi}_1^0) = 0$ GeV, $m(1^{st} \text{ gen. } \tilde{q}) = m(2^{nd} \text{ gen. } \tilde{q})$	1405.7875 1405.7875
Inclusive Searches	$\tilde{q}\tilde{q}\gamma, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{1} \text{ (compressed)} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{1} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{1} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0} $	ο 1 <i>e</i> ,μ 2 <i>e</i> ,μ	2-6 jets 3-6 jets	Yes Yes Yes	20.3 20.3 20	q 250 GeV $m(\tilde{q})-m(\tilde{x}_1) = m(c)$ \tilde{g} 1.33 TeV $m(\tilde{\chi}_1^0)=0$ GeV \tilde{g} 1.2 TeV $m(\tilde{\chi}_1^0)=0$ GeV \tilde{g} 1.2 TeV $m(\tilde{\chi}_1^0)=0$ GeV \tilde{g} 1.2 TeV $m(\tilde{\chi}_1^0)=0$ GeV	1411.1559 1405.7875 1501.03555
	$gg, g \rightarrow qq(t(t)(V)(V))_1$ GMSB ($\tilde{\ell}$ NLSP) GGM (bino NLSP) GGM (wino NLSP)	$1-2\tau + 0-1\ell$ 2γ $1e, \mu + \gamma$	0-2 jets - -	Yes Yes Yes	20.3 20.3 4.8	\tilde{g} 1.02 rev $m(x_1) = 0$ GeV \tilde{g} 1.6 TeV $tan\beta > 20$ \tilde{g} 1.28 TeV $m(\tilde{v}_1^0) > 50$ GeV \tilde{g} 619 GeV $m(\tilde{v}_1^0) > 50$ GeV	1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144
	GGM (higgsino-bino NLSP) GGM (higgsino NLSP) Gravitino LSP	γ 2 <i>e</i> , μ (Z) 0	1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes	4.8 5.8 20.3	\tilde{g} 900 GeV $m(\tilde{k}_1^0)>220$ GeV \tilde{g} 690 GeV $m(NLSP)>200$ GeV \tilde{g} 690 GeV $m(NLSP)>200$ GeV $F^{1/2}$ scale 865 GeV $m(\tilde{G})=1.8 \times 10^{-4}$ eV, $m(\tilde{g})=m(\tilde{q})=1.5$ TeV	1211.1167 ATLAS-CONF-2012-152 1502.01518
3 rd gen. ẽ med.	$ \begin{split} \tilde{g} &\rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\rightarrow t \bar{\ell} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\rightarrow t \bar{\ell} \tilde{\chi}_{1}^{0} \\ \tilde{g} &\rightarrow b \bar{\ell} \tilde{\chi}_{1}^{+} \end{split} $	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\tilde{s} 1.25 TeV $m(\tilde{k}_1^0) < 400 \text{ GeV}$ \tilde{s} 1.1 TeV $m(\tilde{k}_1^0) < 350 \text{ GeV}$ \tilde{s} 1.34 TeV $m(\tilde{k}_1^0) < 400 \text{ GeV}$ \tilde{s} 1.3 TeV $m(\tilde{k}_1^0) < 300 \text{ GeV}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (natural GMSB) \end{split} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 0-1 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \end{array}$	2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets 1-2 <i>b</i> nono-jet/ <i>c</i> -t 1 <i>b</i>	Yes Yes Yes Yes Yes ag Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406.1122 1407.0608 1403.5222
EW direct	$\begin{split} \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \hline \tilde{\ell}_{L,R}, \tilde{\ell}_{-L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\ell}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} , h \rightarrow b \bar{b} / W W / \tau \tau / \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \end{split}$	$\begin{array}{c} 3 \ e, \mu \ (Z) \\ \hline 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ \gamma \gamma e, \mu, \gamma \\ 4 \ e, \mu \end{array}$	1 b 0 - 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5222 1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, GMSB, \tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}, \text{ long-lived } \tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow q q \mu$ (RPV)	Disapp. trk 0 trk ,μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow e e \tilde{v}_{\mu}, e \mu \tilde{v}_{e} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e \tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{l}_{1} t, \ \tilde{l}_{1} \rightarrow b s \end{array} $	$ \begin{array}{r} 2 e, \mu \\ 1 e, \mu + \tau \\ 2 e, \mu (SS) \\ 4 e, \mu \\ 3 e, \mu + \tau \\ 0 \\ 2 e, \mu (SS) \end{array} $	- - 0-3 <i>b</i> - - 6-7 jets 0-3 <i>b</i>	- Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
<u>Other</u>	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	\tilde{c} 490 GeV m(\tilde{k}_1^0)<200 GeV	1501.01325
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8$ TeV partial data	$\sqrt{s} =$ full	8 TeV data	1	⁻¹ 1 Mass scale [TeV]	

ATLAS Preliminary

How Natural SUSY would look like

Reality

 $\delta m_h^2 \sim m_{\rm SUSY}^2$

 $\delta m_h^2 \sim m_{\rm SUSY}^2$

 $\delta\Lambda_{\rm CC} \sim m_{\rm SUSY}^4$

Bigger pressure to low scale SUSY!

 $\delta m_h^2 \sim m_{\rm SUSY}^2$

 $\delta \Lambda_{\rm CC} \sim m_{\rm SUSY}^4$

Bigger pressure to low scale SUSY!

Naturalness not a good criterion to predict SUSY?

Weaker argument: Gauge Coupling Unification

 $m_{\rm SUSY} \lesssim {\rm few} \cdot 10 {\rm TeV}$

Back to Experiments Use Precision Data

ATLAS + CMS $m_h^{\text{exp}} = 125.09 \pm 0.24 \text{ GeV}$

ATLAS + CMS $m_h^{\text{exp}} = 125.09 \pm 0.24 \text{ GeV}$

$$m_h^2 \simeq m_Z^2 \cos^2 2\beta + \frac{3}{\pi^2} \frac{m_t^4 \sin^4 \beta}{v^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \tilde{X}_t^2 \left(1 - \frac{\tilde{X}_t^2}{12} \right) \right] + \dots$$

ATLAS + CMS $m_h^{\text{exp}} = 125.09 \pm 0.24 \text{ GeV}$

$$m_h^2 \simeq m_Z^2 \cos^2 2\beta + \frac{3}{\pi^2} \frac{m_t^4 \sin^4 \beta}{v^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \tilde{X}_t^2 \left(1 - \frac{\tilde{X}_t^2}{12} \right) \right] + \dots$$

only log-dependence on new physics scale

ATLAS + CMS $m_h^{\text{exp}} = 125.09 \pm 0.24 \text{ GeV}$

only log-dependence on new physics scale

⇒ high precision to get reliable constraints

Exploiting the Hierarchy Problem: the EFT technique

SUSY

Exploiting the Hierarchy Problem: the EFT technique

Exploiting the Hierarchy Problem:

the EFT technique

Exploiting the Hierarchy Problem: the EFT technique

Small improvement w.r.t. to a longstanding effort

Pokorski, Rosiek, Dabelstein, Zhang, Espinosa, Quiros, Hempfling, Hoang, Heinemeyer, Hollik, Weiglein, Brignole, Slavich, Zwirner, Degrassi, Martin, Giudice, Strumia, Wagner ... many many others

apologies to the missing ones

Small improvement w.r.t. to a longstanding effort

Pokorski, Rosiek, Dabelstein, Zhang, Espinosa, Quiros, Hempfling, Hoang, Heinemeyer, Hollik, Weiglein, Brignole, Slavich, Zwirner, Degrassi, Martin, Giudice, Strumia, Wagner ... many many others

apologies to the missing ones

Our contribution: (mostly w.r.t. Bagnaschi *et al.* '14)

- Recomputation of $O(\alpha_s \alpha_t)$ corrections
- Computation of $O(\alpha_t^2)$ with scale dependence
- Inclusion bottom/tau corrections (w/ resummation of tanβ enhanced corr.)
- Computation both in DRbar and OS schemes
- Study of the uncertainties and comparison with existing computations
- A "fast" Mathematica[®] package: SusyED

SusyED

www.ictp.it/~susyhd

see also Giudice, Strumia '11

A "natural" SUSY-like spectrum: $\tan\beta = 20$, $\mu = 300$ GeV, $m_{susy} = 2$ TeV

Estimate of the Uncertainties:

Estimate of the Uncertainties:

Estimate of the Uncertainties:

Back to the Simple

Minimal Gauge Mediation ^D_R

Dine, Nir, Shirman Rattazzi, Sarid '96

Minimal Gauge Mediation ¹_H

Dine, Nir, Shirman Rattazzi, Sarid '96

Minimal Gauge Mediation Ratta

Dine, Nir, Shirman Rattazzi, Sarid '96

gauge mediated spectrum:

gauginos
$$M_j = N \frac{\alpha_j}{4\pi} \Lambda$$

$$m_i = 2\sqrt{N}C_{ij}\frac{\alpha_j}{4\pi}\Lambda$$

Minimal Gauge Mediation Ratta

Dine, Nir, Shirman Rattazzi, Sarid '96

gauge mediated spectrum:

gauginos
$$M_j = N \frac{\alpha_j}{4\pi} \Lambda$$

scalars $m_i = 2\sqrt{N}C_{ij} \frac{\alpha_j}{4\pi} \Lambda$ \Longrightarrow flavor blind spectrum:
NO FCNC

still potential problem with EDMs

SUSY term

 μ

no EWSB

4 parameters

4 parameters

$$EWSB \Rightarrow \mu \sim m_0$$
$$m_h \Rightarrow \Lambda \sim \text{PeV}$$

4 parameters

$$EWSB \Rightarrow \mu \sim m_0$$
$$m_h \Rightarrow \Lambda \sim \text{PeV}$$

2 parameters

N, *M* but small effect on spectrum

MGM:

minimal and most predictive implementation of SUSY

it explains:

- absense of deviation in flavor
- absence of EDMs
- absence of DM in WIMP searches
- gauge coupling unification
- absence of sparticles at the LHC!

MGM:

minimal and most predictive implementation of SUSY

it explains:

- absense of deviation in flavor
- absence of EDMs
- absence of DM in WIMP searches
- gauge coupling unification
- absence of sparticles at the LHC!

Perfect target for an 100 TeV collider? Improvement on *top* mass (and SM computations) required!

Backup

Effects from splitting fermions

