

WP2: 11Carbon PET-aided hadron therapy

Research objectives ESR positions Secondments

L. Penescu, MedAustron On behalf of WP2

WP2 Scope. Presentation summary.

Scope of WP2: 11Carbon PET-aided hadron therapy

\checkmark	Production and mass separation of ¹¹ CO ⁺ .	(ESR11)
\checkmark	Development of charge breeding scheme required for acceleration.	(ESR3)
\checkmark	Full acceleration and treatment - ¹¹ C hadron therapy test and planning.	(ESR9)
\checkmark	Further development of bioconjugates suitable for imaging and treatment of the	ovarian cancer.
	New bifunctional fluorescent and radioactive bioligand. Tests with 11C as chelate.	(ESR15)
\checkmark	Development of multimodal imaging methodologies for the treatment planning.	
	Methodology and preclinical techniques. Biological models.	(ESR12)

PARTNERS

ESR11 :	University of Leuven (Recruitin	g and Enrolment; 36 mo)	+ <u>CNAO</u> (Secondment; 10 mo)
ESR3:	CERN (Recruiting; 36 mo)	+ Chalmers University of Technology (Enrolment)	+ MedAustron (Secondment; 5 mo)
ESR9:	CNAO (Recruiting; 36 mo)	+ University of Pavia (Enrolment)	+ <u>CERN</u> , <u>HUG</u> (Secondment; 3 + 3 mo)
ESR15 :	HUG (Recruiting; 36 mo)	+ <u>EPFL</u> (Enrolment)	+ AAA (Secondment; 3 mo)
ESR12:	HUG (Recruiting; 36 mo)	+ University of Geneva (Enrolment)	+ <u>CNAO</u> (Secondment; 3 mo)

Presentation SUMMARY

- > Delivering a beam for treatment at an existing facility (MedAustron, CNAO, HIT).
- > Possibilities for mixing/replacing ¹²C with ¹¹C, for treatment and PET imaging.
- Open questions (to be addressed by the ESRs).

PIMMS-based accelerators: HIT, CNAO, MedAustron

 \checkmark

PIMMS: Proton-Ion Medical Machine Study, CERN 2000-006 **MedAustron CNAO** Linac RFQ 0.4 - 7 MeV/u H³⁺ 0.008 - 0.4 MeV/u H3 0.4 - 7 MeV/u C4+ 0.008 - 0.4 MeV/u C4+ Ion Sources 0.008 MeV/u H³⁺ I ~ 0.7 mA H³⁺ 0.008 MeV/u C4+ I ~ 0.2 mA C4+ Synchrotron **Two Ion Sources** 7-250 MeV p 7-400 MeV/u C HIT Line V I ~ 0.1-6 mÅ (p) Lina I ~ 0.03-1.5 mA (C) Synchrotron Line Z Horizontal Gantry treatmen High Energy Transfer HEBT Lines 60-250 MeV p < 10¹⁰ p/spill (~2nA) ne T Line U 120-400 MeV/u C < 4 108 C/spill (~0.4nA) Beam Experimental Dump Area (QS) Same main ideas \checkmark **Different implementation choices**

The 12C beam path at MedAustron

MedAustron 🎴

- Pencil beam: 4 to 10 mm FWHM in vacuum
- Fast magnetic deflection, H and V (20 m/s)
- Scanning field size: 20 x 20 cm² (IR 1 to 3)
- Beam position accuracy: ± 0.5 mm
- $> \le 1 \cdot 10^{10}$ protons/spill; $\le 4 \cdot 10^8$ C-ions/spill
- Energies corresponding to 3-37 cm penetration depth in human tissue
- $ightarrow \sim$ 1 minute to deliver 2 Gray in 1 L tumor volume

Applied magnet current current

5

The accelerator side: commissioning a "cycle code"

The accelerator is able to generate:

- ✓ Number of ion species: 2
- ✓ Number of different energies: 255
- ✓ Number of beam sizes: 4
- ✓ Number of intensities: 4
- ✓ Number of extraction times: 8
- Beam combinations per beam line:
 65280
- Gantry: different angles need to be considered
- Non-clinical research: extended energy range

PARAMETERS which are NOT part of cycle code, but part of design + commissioning:

- Energy spread
- Spill quality (stability: intensity, position)
- Choices of beam optics (longitudinal and transversal)

DURATION OF A CYCLE – depends on accelerator performance:

- Injection time
- Acceleration time
- Short hysteresis time
- Hardware configuration time

Question marks vs. ESR topics

- 1) How to produce the 11C with needed intensity, reproducibility and stability?
- 2) Where to inject the 11C along the beam path? (answer correlated to 1...)
- 3) PET-related questions...

- Compact PET cyclotron → N2 target → release of 11CO2 into ion source → beam path joining 12C
- ISOL production → mass separation and charge breeding (→ post-acceleration?) → beam path joining 12C

\checkmark	Production and mass separation of ¹¹ CO ⁺	(ESR11)
\checkmark	Development of charge breeding scheme required for acceleration	(ESR3)
\checkmark	Full acceleration and treatment - ¹¹ C hadron therapy test and planning	(ESR9)
\checkmark	Further development of bioconjugates suitable for imaging and treatment of the	ovarian cancer.
	New bifunctional fluorescent and radioactive bioligand. Tests with 11C as chelate.	(ESR15)
\checkmark	Development of multimodal imaging methodologies for the treatment planning.	
	Methodology and preclinical techniques. Biological models.	(ESR12)

TO HAVE IN MIND: The available intensity per spill is not a veto-condition.

Accelerator efficiency depends on all of the following:

- Intensity per spill
- Cycle time (acceleration time; hysteresis; re/configuration; injection of 11C?)
- Strategy for using effectively all accelerated particles.
- Dealing successfully with machine limitations at higher intensities.

