MedAustron

WP2:
 11Carbon PET-aided hadron therapy

Research objectives
ESR positions
Secondments
L. Penescu, MedAustron

On behalf of WP2

WP2 Scope. Presentation summary.

Scope of WP2: 11Carbon PET-aided hadion therapy
\checkmark Production and mass separation of ${ }^{11} \mathrm{CO}^{+}$.
(ESR11)
\checkmark Development of charge breeding scheme required for acceleration.
(ESR3)
\checkmark Full acceleration and treatment $-{ }^{11} \mathrm{C}$ hadron therapy test and planning.
\checkmark Further development of bioconjugates suitable for imaging and treatment of the ovarian cancer. New bifunctional fluorescent and radioactive bioligand. Tests with 11C as chelate.
(ESR15)
\checkmark Development of multimodal imaging methodologies for the treatment planning.
Methodology and preclinical techniques. Biological models.
(ESR12)

PARTNERS

ESR11: University of Leuven (Recrun	Enrolment; 36 mo)	+ CNAO (Secondment; 10 mo)
ESR3: CERN (Recruiting; 36 mo)	+ Chalmers University of Technology (Enrolment)	+ MedAustron (Secondment; 5 mo)
ESR9: CNAO (Recruiting; 36 mo)	+ University of Pavia (Enrolment)	+ CERN, HUG (Secondment; $3+3 \mathrm{mo}$)
ESR15: HUG (Recruiting; 36 mo)	+ EPFL (Enrolment)	+ AAA (Secondment; 3 mo)
ESR12: HUG (Recruiting; 36 mo)	+ University of Geneva (Enrolment)	+

Presentation SUMMMARY
> Delivering a beam for treatment at an existing facility (MedAustron, CNAO, HIT).
$>$ Possibilities for mixing/replacing ${ }^{12} \mathrm{C}$ with ${ }^{11} \mathrm{C}$, for treatment and PET imaging.
$>$ Open questions (to be addressed by the ESRs).

PIMMS-based accelerators: HIT, CNAO, MedAustron

MedAustron ${ }^{\text {(}}$

PIMMS: Proton-Ion Medical Machine Study, CERN 2000-006

The 12C beam path at MedAustron

Requesting a beam

Treatment plan = a sequence of cycle codes

- Particle type
- Ion Source.
- Beam size
- Variant.
- Irradiation room
- Version.
- MEBT degrader used
站

Mask

Applied magnet current

000.T00.000.001.0000 (Protons; Variant T)

Delivering 2 beam species

1 beam species, 1 plane

- 3D matrix of intensities defined by treatment plan
- Point by point scanning of slices
- A spill can cover a full slice
- From high E to low E

1 beam species, 2 planes (H and V)

- Treatment plan with dose splitting between planes.
- Different penetration depths (=energies) for the 2 planes.
- Full scan in 1 plane, followed by full scan in $2^{\text {nd }}$ plane.
- Scan in 1 plane as above.
(hysteresis of cw magnets)
- Scan in $2^{\text {nd }}$ plane following same strategy as above.

12C and/or 11C
 \checkmark Treatment
 \checkmark PET imaging

2 beam species, 1 (or 2) planes

- Treatment plan with dose splitting between species.
- Different penetration depths (=energies) for the 2 species.
- Full scan in 1 plane, followed by full scan in $2^{\text {nd }}$ plane.
- Scan in 1 plane as above.
- (hysteresis of cw magnets)
- Scan in $2^{\text {nd }}$ plane following same strategy as above.

The accelerator side: commissioning a "cycle code"

The accelerator is able to generate:

\checkmark Number of ion species: 2
\checkmark Number of different energies: 255
\checkmark Number of beam sizes: 4
\checkmark Number of intensities: 4
\checkmark Number of extraction times: 8
> Beam combinations per beam line: 65280
> Gantry: different angles need to be considered
> Non-clinical research: extended energy range

PARAMETERS which are NOT part of cycle code, but part of design + commissioning:
$>$ Energy spread
$>$ Spill quality (stability: intensity, position)
$>$ Choices of beam optics (longitudinal and transversal)

DURATION OF A CYCLE - depends on accelerator performance:
\rightarrow Injection time
\Rightarrow Acceleration time
> Short hysteresis time
> Hardware configuration time

Preparation and QA of a medical beam

MedAustron ${ }^{\text {W }}$

(A) Same applied settings

Reproducible BEAM
(B) Reproducible machine performance

Understanding of:

- Hardware stability
- Hardware - Hardware interactions
- HW - Beam interactions
- Beam - Beam interactions
- Aging effects
- Maintenance effects
- Failure statistics
\checkmark Spill formation: defined in the synchrotron
- Duration.
- Intensity uniformity.
- Position uniformity.
\checkmark Spot formation: defined in the HEBT line
- Spot size
- Position at isocenter
\checkmark Restrictions on injector: not critical
- Most of the injected beam limitations can be corrected in the synchrotron

Question marks vs. ESR topics

1) How to produce the 11C with needed intensity, reproducibility and stability?
2) Where to inject the 11C along the beam path? (answer correlated to $1 \ldots$)
3) PET-related questions...
4) Compact PET cyclotron $\rightarrow \mathrm{N} 2$ target \rightarrow release of 11CO2 into ion source \rightarrow beam path joining 12C
5) ISOL production \rightarrow mass separation and charge breeding (\rightarrow post-acceleration?) \rightarrow beam path joining 12C
\checkmark Production and mass separation of ${ }^{11} \mathrm{CO}^{+}$
(ESR11)
\checkmark Development of charge breeding scheme required for acceleration
\checkmark Full acceleration and treatment $-{ }^{11} \mathrm{C}$ hadron therapy test and planning
\checkmark Further development of bioconjugates suitable for imaging and treatment of the ovarian cancer. New bifunctional fluorescent and radioactive bioligand. Tests with 11C as chelate.
\checkmark Development of multimodal imaging methodologies for the treatment planning.
Methodology and preclinical techniques. Biological models.
(ESR12)

TO HAVE IN MIND: The available intensity per spill is not a veto-condition.

Accelerator efficiency depends on all of the following:

- Intensity per spill
- Cycle time (acceleration time; hysteresis; re/configuration; injection of 11C?)
- Strategy for using effectively all accelerated particles.
- Dealing successfully with machine limitations at higher intensities.

