

Proton-Proton and Proton-Lambda correlations in p+Nb reactions measured with HADES

Oliver Arnold

05.11.2015

Excellence Cluster Universe

Outline

Two particle correlations: Definition

- Proton-proton correlations
 - Corrections and results from comparison with models
- Lambda-proton correlations
 - Use of proton-proton results to investigate the interaction of Λp pairs

Introduction

Theoretical correlation function:

$$C^{ab}(\mathbf{P}, \mathbf{q}) = \frac{\mathcal{P}(\vec{p}_a, \vec{p}_b)}{\mathcal{P}(\vec{p}_a)\mathcal{P}(\vec{p}_b)} = \int d^3r' S_{\mathbf{P}}(\mathbf{r}') |\phi(\mathbf{q}, \mathbf{r}')|^2$$

Source function:

Distribution of relative distance between the particle pairs (in CMS)

Wavefunction of particle pair: Includes the interactions

Experimental correlation function:

$$C(k) = \frac{A(k)}{B(k)}$$

$$C(k)=rac{A(k)}{B(k)}$$
 $k=rac{1}{2}|\mathbf{p}_1-\mathbf{p}_2|$ $\mathbf{p}_1+\mathbf{p}_2=0$ Pair reference frame (PRF)

- **Same:** relative momentum dist. of particles in the same event
- **Mixed:** particles from different events (not correlated)
- Normalized to unity: $C(k>100~{\rm MeV/c})\equiv 1$

Introduction

Strategy of analysis – two steps:

$$C^{ab}(\mathbf{P}, \mathbf{q}) = \frac{\mathcal{P}(\vec{p}_a, \vec{p}_b)}{\mathcal{P}(\vec{p}_a)\mathcal{P}(\vec{p}_b)} = \int d^3r' S_{\mathbf{P}}(\mathbf{r'}) |\phi(\mathbf{q}, \mathbf{r'})|^2$$

1. Understand the emission profile of the pNb system

2. Use the information of point 1 to investigate particle interactions which are not well known

Introduction

Strategy of analysis – two steps:

$$C^{ab}(\mathbf{P}, \mathbf{q}) = \frac{\mathcal{P}(\vec{p}_a, \vec{p}_b)}{\mathcal{P}(\vec{p}_a)\mathcal{P}(\vec{p}_b)} = \int d^3r' S_{\mathbf{P}}(\mathbf{r'}) |\phi(\mathbf{q}, \mathbf{r'})|^2$$

1. Understand the emission profile of the pNb system

Use $\, {f pp} \,$ pairs since we have plenty of protons and we know their interaction

Reaction

System under investigation:

$$p + ^{93}_{41} Nb \rightarrow P + X$$

 $P = pp, \pi^{\pm}\pi^{\pm}, ...$

Beam:

Target:

12-fold segmented target of $^{93}{\rm Nb}$ discs 2.8% interaction probability

$$\langle A_{part} \rangle \sim 2.7$$

Femtoscopy in a small system!

Experiment

High Acceptance Di-Electron Spectrometer - HADES:

Features of HADES:

- Large geometric acceptance $\phi \in [0,2\pi], \Theta \in [15^\circ,85^\circ]$
- Momentum resolution $\,\sim 2-6\%$

Correlation Function

Information about the source – proton proton correlation function:

Correlation Function

Information about the source – proton proton correlation function:

Proton-proton correlation function without any corrections:

Correlation Function

Information about the source – proton proton correlation function:

Corrections

Source Size

Information about the source – proton proton correlation function:

Extract source size: $C^{ab}(k) = N \int d^3r' S_{\mathbf{P}}(\mathbf{r}') |\phi(\mathbf{k}, \mathbf{r}')|^2$

$$R_G = 2.016 \pm 0.010^{+0.109}_{-0.118} \text{ fm}$$

Source Size

Starting point: Correlations between baryons - protons

Extract one dimensional source parameters

.... as a function of $k_T = |{\bf p}_{1T} + {\bf p}_{2T}| \in [350, 1500] \ {\rm MeV/c}$

Model comparison

Source comparison to transport theory (same potential used than for the fit):

In one dimension:

Calculation of UrQMD correlation function with help of CRAB

Model comparison

Source comparison to transport theory (same potential used than for the fit):

In three dimensions:

Strategy of analysis:

$$C^{ab}(\mathbf{P}, \mathbf{q}) = \frac{\mathcal{P}(\vec{p}_a, \vec{p}_b)}{\mathcal{P}(\vec{p}_a)\mathcal{P}(\vec{p}_b)} = \int d^3r' S_{\mathbf{P}}(\mathbf{r}') |\phi(\mathbf{q}, \mathbf{r}')|^2$$
2.

1. Understand the emission profile of the pNb system

2. Use the information of point 1 to investigate particle interactions of not well known type

Select $\Lambda's$ with large purity – different cut combinations to investigate systematics:

Select $\Lambda's$ with large purity – different cut combinations to investigate systematics:

Select $\Lambda's$ with large purity – different cut combinations to investigate systematics:

Again corrections: Influence of long range correlations for all three cut combinations:

Model the long-range part with a polynomial $C_{\rm LRC}=1+ak+bk^2\quad k\in[250,600]~{\rm MeV/c}$

Again corrections: Influence of long range correlations for all three cut combinations:

Model the long-range part with a polynomial $C_{\rm LRC}=1+ak+bk^2 \quad k\in[250,600]~{
m MeV/c}$

Simulation confirms trend of the fit from the long-range part also at small relative momenta

Apply corrections – investigate systematics:

Correlation function after application of all corrections

Lednicky's model:

$$C(k) = 1 + \sum_{S} \rho_{S} \left[\frac{1}{2} \left| \frac{f^{S}(k)}{R_{G}^{\Lambda p}} \right|^{2} \left(1 - \frac{d_{0}^{S}}{2\sqrt{\pi}R_{G}^{\Lambda p}} \right) + 2 \frac{\mathcal{R}f^{S}(k)}{\sqrt{\pi}R_{G}^{\Lambda p}} F_{1}(QR_{G}^{\Lambda p}) - \frac{\mathcal{I}f^{S}(k)}{R_{G}^{\Lambda p}} F_{2}(QR_{G}^{\Lambda p}) \right]$$

Apply corrections – investigate systematics:

Correlation function after application of all corrections

Lednicky's model:

$$C(k) = 1 + \sum_{S} \rho_{S} \left[\frac{1}{2} \left| \frac{f^{S}(k)}{(R_{G}^{\Lambda p})} \right|^{2} \left(1 - \frac{d_{0}^{S}}{2\sqrt{\mathbf{t}}R_{G}^{\Lambda p}} \right) + 2 \frac{\mathcal{R}f^{S}(k)}{\sqrt{\mathbf{t}}R_{G}^{\Lambda p}} F_{1}(QR_{G}^{\Lambda p}) - \frac{\mathcal{I}f^{S}(k)}{(R_{G}^{\Lambda p})} F_{2}(QR_{G}^{\Lambda p}) \right]$$

Source function extraction from transport theory (UrQMD):

Improve UrQMD for the scattering of Lambdas

Source function extraction from transport theory (UrQMD):

Improve UrQMD for the scattering of Lambdas

Source extraction from transport theory (UrQMD) - LCMS:

Source extraction from transport theory (UrQMD) - LCMS:

Source extraction from transport theory (UrQMD) - LCMS:

Comparison to models:

Summary & Outlook

Summary

- Source size of emission region in pNb system determined with pp-pairs
- Knowing the source size allows to study final state interactions of not well known type

Outlook

Investigate systematics of the reduction factor

Backup

Comparison to models:

