
Model independent analysis of nearly Levy correlations in 1, 2 and 3 dimensions

T. Novák KRF, Wigner RCP

WPCF 2015, Warsaw 04 November 2015

T. Csörgő KRF, Wigner RCP

H.C. Eggers and M.B. De Kock University of Stellenbosh

Fig. 1. The Bose–Einstein correlation function R_2 for events generated by PYTHIA. The curve corresponds to a fit of the one-sided Lévy parametrization, Eq. (13).

OUTLINE

Model-independent shape analysis:

- General introduction
- Edgeworth,
- Laguerre,
- Levy expansions

Summary

T. Csörgő et al. / Physics Letters B 663 (2008) 214–216

MODEL - INDEPENDENT SHAPE ANALYIS I.

experimental properties:

- i) The correlation function tends to a constant for large values of the relative momentum Q.
- ii) The correlation function has a non-trivial structure at a certain value of its argument.

The location of the non-trivial structure in the correlation function is assumed for simplicity to be close to Q=0.

Model-independent but experimentally testable:

- w(t) measure in an abstract H-space
- approximate form of the correlations
- t: dimensionless scale variable

$$\int dt w(t) h_n(t) h_m(t) = \delta_{n,m},$$

$$f(t) = \sum_{n=0}^{\infty} f_n h_n(t),$$

$$f_n = \int dt w(t) f(t) h_n(t).$$

e.g. $t = Q_I R_I$

MODEL - INDEPENDENT SHAPE ANALYIS II.

$$C_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{N_2(\mathbf{k}_1, \mathbf{k}_2)}{N_1(\mathbf{k}_1) N_1(\mathbf{k}_2)},$$

$$R_2(\mathbf{k}_1, \mathbf{k}_2) = C_2(\mathbf{k}_1, \mathbf{k}_2) - 1.$$

Let us assume, that the function $g(t) = R_2(t)/w(t)$ is also an element of the Hilbert space H. This is possible, if

$$\int dt \, w(t)g^2(t) = \int dt \, \left[R_2^2(t)/w(t) \right] < \infty, \tag{6}$$

Then the function g can be expanded as

$$g(t) = \sum_{n=0}^{\infty} g_n h_n(t),$$
$$g_n = \int dt R_2(t) h_n(t).$$

From the completeness of the Hilbert space and from the assumption that g(t) is in the Hilbert space:

$$R_2(t) = w(t) \sum_{n=0}^{\infty} g_n h_n(t).$$

MODEL - INDEPENDENT SHAPE ANALYIS III.

$$C_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{N_2(\mathbf{k}_1, \mathbf{k}_2)}{N_1(\mathbf{k}_1) N_1(\mathbf{k}_2)},$$

$$C_2(t) = \mathcal{N}\left\{1 + \lambda_w w(t) \sum_{n=0}^{\infty} g_n h_n(t)\right\}$$

Model-independent AND experimentally testable:

- method for any approximate shape w(t)
- the core-halo intercept parameter of the CF is
- coefficients by numerical integration (fits to data)
- condition for applicability: experimentally testabe

$$\lambda_* = \lambda_w \sum_{n=0}^{\infty} g_n h_n(0)$$

$$g_n = \int dt \, R_2(t) h_n(t)$$

$$\int dt \left[R_2^2(t)/w(t) \right] < \infty$$

EDGEWORTH EXPANSION: ~ GAUSSIAN

$$t = \sqrt{2}QR_E,$$

$$w(t) = \exp(-t^2/2),$$

$$\int_{-\infty}^{\infty} dt \, \exp(-t^2/2) H_n(t) H_m(t) \propto \delta_{n,m},$$

$$H_n(t) = \exp(t^2/2) \left(-\frac{d}{dt}\right)^n \exp(-t^2/2).$$
 $H_2(t) = t^2 - 1,$ $H_3(t) = t^3 - 3t,$

$$H_1(t) = t,$$

 $H_2(t) = t^2 - 1,$
 $H_3(t) = t^3 - 3t,$
 $H_4(t) = t^4 - 6t^2 + 3, ...$

$$C_2(Q) = \mathcal{N} \left\{ 1 + \lambda_E \exp(-Q^2 R_E^2) \times \left[1 + \frac{\kappa_3}{3!} H_3(\sqrt{2}QR_E) + \frac{\kappa_4}{4!} H_4(\sqrt{2}QR_E) + \dots \right] \right\}.$$

3d generalization straightforward

Applied by NA22, L3, STAR, PHENIX, ALICE, CMS (LHCb?)

LAGUERRE EXPANSIONS: ~ EXPONENTIAL

Model-independent but experimentally tested:

- *w*(*t*) exponential
- *t*: dimensionless
- Laguerre polynomials

$$t = QR_L,$$

$$w(t) = \exp(-t)$$

$$\int_{0}^{\infty} dt \, \exp(-t) L_n(t) L_m(t) \propto \delta_{n,m},$$

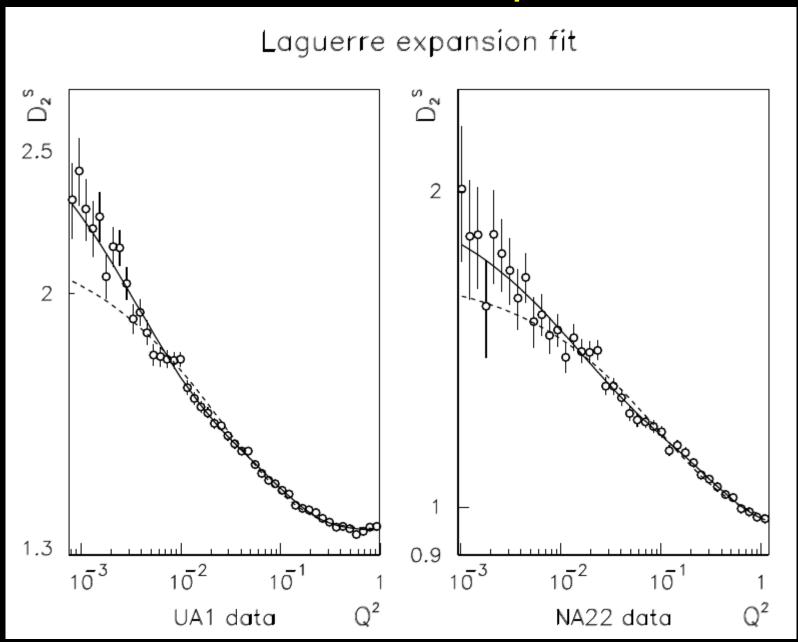
$$L_n(t) = \exp(t) \frac{d^n}{dt^n} (-t)^n \exp(-t).$$

$$L_0(t) = 1,$$

 $L_1(t) = t - 1,$

 $\int dt \, R_2^2(t) \exp(+t) < \infty,$

$$C_2(Q) = \mathcal{N}\left\{1 + \lambda_L \exp(-QR_L) \left[1 + c_1 L_1(QR_L) + \frac{c_2}{2!} L_2(QR_L) + \dots\right]\right\}$$


First successful tests

- NA22, UA1 data
- convergence criteria satisfied
- intercept parameter ~ 1

$$\lambda_* = \lambda_L [1 - c_1 + c_2 - \dots],$$

$$\delta^2 \lambda_* = \delta^2 \lambda_L \left[1 + c_1^2 + c_2^2 + \dots \right] + \lambda_L^2 \left[\delta^2 c_1 + \delta^2 c_2 + \dots \right]$$

LAGUERRE EXPANSIONS: ~ superEXPONENTIAL

T. Csörgő and S: Hegyi, hep-ph/9912220, T. Csörgő, hep-ph/001233

MINIMAL MODEL ASSUMPTION: LEVY

experimental conditions:

- (i) The correlation function tends to a constant for large values of the relative momentum Q.
- (ii) The correlation function deviates from its asymptotic, large Q value in a certain domain of its argument.
- (iii) The two-particle correlation function is related to a Fourier transformed space-time distribution of the source.

Model-independent but:

- Assumes that Coulomb can be corrected
- No assumptions about analyticity yet
- For simplicity, consider 1d case first
- For simplicity, consider factorizable x k
- Normalizations :
 - density
 - multiplicity
 - single-particle spectra

$$C_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{N_2(\mathbf{k}_1, \mathbf{k}_2)}{N_1(\mathbf{k}_1) N_1(\mathbf{k}_2)}$$

$$S(x,k) = f(x) g(k)$$

$$\int dx f(x) = 1, \qquad \int dk g(k) = \langle n \rangle,$$

$$N_1(k) = \int \mathrm{d}x \, S(x,k) = g(k).$$

MINIMAL MODEL ASSUMPTION: LEVY

Model-independent but:

- not assumes analyticity
- C₂ measures a modulus squared Fouriertransform vs relative momentum

$$C_2(k_1, k_2) = 1 + |\tilde{f}(q_{12})|^2,$$

- Correlations non-Gaussian
- Radius not a variance
- $0 < \alpha \le 2$

$$\tilde{f}(q_{12}) = \int \mathrm{d}x \, \exp(\mathrm{i}q_{12}x) \, f(x),$$

$$C(q; \alpha) = 1 + \lambda \exp(-|qR|^{\alpha}).$$

UNIVARIATE LEVY EXAMPLES

Include some well known cases:

- \bullet $\alpha = 2$
 - Gaussian source, Gaussian C₂

$$f(x) = \frac{1}{(2\pi R^2)^{1/2}} \exp\left[-\frac{(x - x_0)^2}{2R^2}\right]$$
$$C(q) = 1 + \exp\left(-q^2 R^2\right)$$

- \bullet $\alpha = 1$
 - Lorentzian source, exponential C₂

$$f(x) = \frac{1}{\pi} \frac{R}{R^2 + (x - x_0)^2},$$

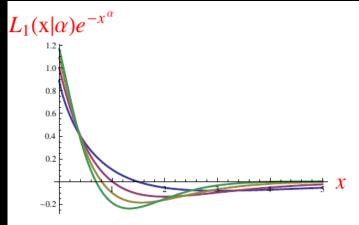
$$C(q) = 1 + \exp(-|qR|).$$

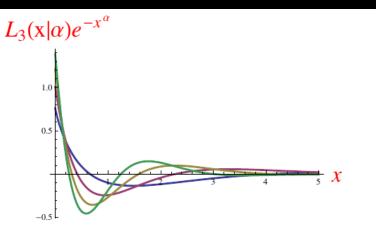
- asymmetric Levy:
 - asymmetric support
 - Streched exponential

$$f(x) = \sqrt{\frac{R}{8\pi}} \frac{1}{(x - x_0)^{3/2}} \exp\left(-\frac{R}{8(x - x_0)}\right)$$
$$x_0 < x < \infty,$$
$$C(q) = 1 + \exp\left(-\sqrt{|qR|}\right).$$

T. Cs, hep-ph/0001233, T. Cs, S. Hegyi, W.A. Zajc, EPJ C36, 67 (2004)

LEVY EXPANSIONS: ~ 1d LEVY


Model-independent but:


- Levy generalizes exponentials and Gaussians
- ubiquoutous in nature
- How far from a Levy?
- Need new set of polynomials orthonormal to a Levy weight

$$L_1(x \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} \\ 1 & x \end{pmatrix}$$

$$L_2(x \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} & \mu_{2,\alpha} \\ \mu_{1,\alpha} & \mu_{2,\alpha} & \mu_{3,\alpha} \\ 1 & x & x^2 \end{pmatrix}$$

$$\mu_{r,\alpha} = \int_0^\infty dx \ x^r f(x \mid \alpha) = \frac{1}{\alpha} \Gamma(\frac{r+1}{\alpha})$$

Lévy polynomials of first and third order times the weight function $e^{-x^{\alpha}}$ for $\alpha = 0.8, 1.0, 1.2, 1.4$.

1st-order Lévy polynomial
$$\gamma \left[1 + \lambda e^{-R^{\alpha}Q^{\alpha}} [1 + c_1 L_1(Q|\alpha, R)] \right]$$

3rd-order Lévy polynomial $\gamma \left[1 + \lambda e^{-R^{\alpha}Q^{\alpha}} [1 + c_1 L_1(Q|\alpha, R) + c_3 L_3(Q|\alpha, R)] \right]$

M. de Kock, H. C. Eggers, T. Cs: arXiv:1206.1680v1 [nucl-th]

LEVY EXPANSIONS: ~ 1d LEVY

In case of α = 1 Laguerre is ok

$$L_0(t \mid \alpha = 1) = 1,$$

 $L_1(t \mid \alpha = 1) = t - 1,$
 $L_2(t \mid \alpha = 1) = t^2 - 4t + 2.$

These reduce to the Laguerre expansions and Laguerre polynomials.

LEVY EXPANSIONS: ~ 1d LEVY

In case of α = 2 instead of Edgeworth new formulae for one-sided Gaussian:

$$L_0(t \mid \alpha = 2) = 1,$$

 $L_1(t \mid \alpha = 2) = \frac{1}{2} \{ \sqrt{\pi}t - 1 \},$
 $L_2(t \mid \alpha = 2) = \frac{1}{16} \{ 2(\pi - 2)t^2 - 2\sqrt{\pi}t + (4 - \pi) \}.$

Provides a new expansion around a Gaussian shape that is defined for the non-negative values of t only.

MULTIVARIATE LEVY DISTRIBUTIONS

The characteristic function is $f(t) = e^{-t^{\alpha}}$, where $t = \left(\sum_{i,j=1,3} R_{i,j}^2 q_i q_j\right)^{1/2}$

$$C_2(k_1, k_2) = 1 + \lambda \exp \left[-\left(\sum_{i,j=1}^3 R_{ij}^2 q_i q_j \right)^{\alpha/2} \right]$$

Model-independent but:

- A new parameter alpha generalizes Gauss
- Solved only for symmetric Levy distributions $(R_{i,j}^2 = R_{j,i}^2)$
- Deep open problems in mathematical statistics

MULTIVARIATE LEVY EXPANSIONS

$$L_1(x \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} \\ 1 & x \end{pmatrix}$$

$$\mu_{r,\alpha} = \int_0^\infty dx \ x^r f(x \mid \alpha) = \frac{1}{\alpha} \Gamma(\frac{r+1}{\alpha})$$

$$L_1(t|\alpha) = \frac{t}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) - \frac{1}{\alpha} \Gamma\left(\frac{2}{\alpha}\right)$$

$$L_2(t \mid \alpha) = \det \begin{pmatrix} \mu_{0,\alpha} & \mu_{1,\alpha} & \mu_{2,\alpha} \\ \mu_{1,\alpha} & \mu_{2,\alpha} & \mu_{3,\alpha} \\ 1 & t & t^2 \end{pmatrix},$$

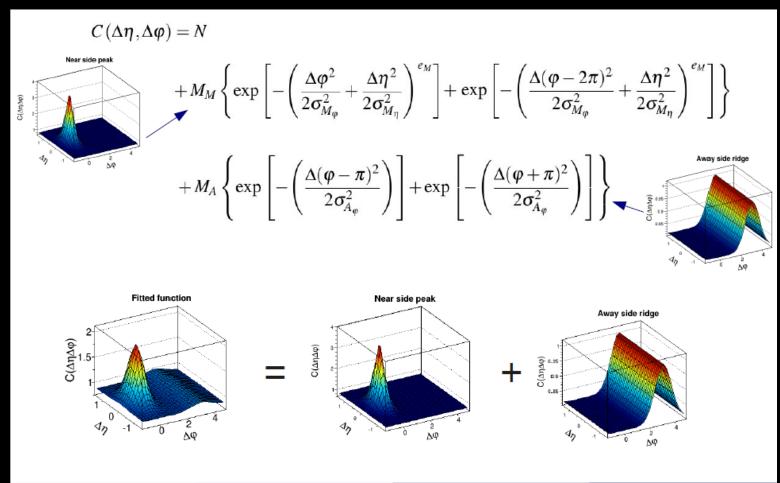
$$L_2(t \mid \alpha) = \frac{1}{\alpha^2} \left\{ \left[\Gamma(\frac{1}{\alpha}) \Gamma(\frac{3}{\alpha}) - \Gamma^2(\frac{2}{\alpha}) \right] t^2 - \left[\Gamma(\frac{1}{\alpha}) \Gamma(\frac{4}{\alpha}) - \Gamma(\frac{3}{\alpha}) \Gamma(\frac{2}{\alpha}) \right] t + \left[\Gamma(\frac{2}{\alpha}) \Gamma(\frac{4}{\alpha}) - \Gamma^2(\frac{3}{\alpha}) \right] \right\}.$$

1st-order Levy expansion

$$t = \left(\sum_{i,j=1}^{3} R_{i,j}^{2} q_{i} q_{j}\right)^{1/2}$$

$$C_2(Q) = N \left\{ 1 + \lambda \exp\left(-\left(\sum_{i,j=1}^3 R_{i,j}^2 q_i q_j\right)^{\alpha/2}\right) \right\}$$

$$\left[1 + \frac{c_1}{\alpha} \left(\left(\sum_{i,j=1}^3 R_{i,j}^2 q_i q_j\right)^{1/2} \Gamma\left(\frac{1}{\alpha}\right) - \Gamma\left(\frac{2}{\alpha}\right)\right)\right] \right\}$$


M. de Kock, H. C. Eggers, T. Cs: arXiv:1206.1680v1 [nucl-th]

POSSIBLE APPLICATIONS I

Malgorzata's talk at WPCF2014

$$e_M = \alpha/2$$

Levy expansion term could be added.

POSSIBLE APPLICATIONS II

Felix's talk at WPCF2015 (background substraction)

The background is modeled as a stretched exponential in q_{inv} :

$$\Omega(q_{\mathrm{inv}}) = 1 + \lambda_{\mathrm{bkgd}} e^{-|R_{\mathrm{bkgd}}q_{\mathrm{inv}}|^{\alpha_{\mathrm{bkgd}}}}$$

- Could be multivariate Levy and expansion term could be added.
- But the form of the background may modify the signal.

SUMMARY AND CONCLUSIONS

Several model-independent methods:

- Based on matching an abstract measure in H to the approximate shape of data
- Gaussian: Edgeworth expansions
- Exponential: Laguerre expansions
- Levy (0 < $\alpha \le 2$): Levy expansions
- In case of alpha = 1 Laguerre ok
- In case of alpha = 2 new formulae for Gaussian
- New directions: multivariate Levy expansions