Event shape analysis in ultrarelativistic nuclear collisions

Renata Kopečná in collaboration with Boris Tomášik

Faculty of Nuclear Sciences and Physical Engineering CTU in Prague

XI Workshop on Particle Correlations and Femtoscopy

6th of November, 2015

Outline

Motivation

• Event shape engineering

ESSTER

- Toy Model Monte Carlo Generator
- Event Shape Analysis

Results

イロト 不得 とくほと くほど

Motivation

- Every event undergoes different initial conditions, different fluctuations
- Fluctuations lost during summation
- Mixing really similar events
- Single event femtoscopy?
- Studying effects of the initial geometry
 - Sorting events according to different initial conditions
 - Centrality: problematic for small ranges
 - Differently sized and shaped nuclei
- What is a good observable for 'sorting' events?

Event Shape Engineering

- Two subevents
 - Subevent a: event selection
 - Subevent b: physical analysis
- Helps avoiding nonphysical biases (nonflow effects)
- Information loss
- Event selection according to the magnitude of the *reduced flow vector* q_n

$$\vec{Q}_n = \left(\sum_{i=1}^M \cos(n\phi_i), \sum_{i=1}^M \sin(n\phi_i)\right),$$

$$q_n = |ec{Q}_n|/\sqrt{M}$$
 .

J. Schukraft, A. Timmins, S. A. Voloshin Phys. Lett. B 719 (2013) 394-398

Ordering example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ordering example

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Ordering example

- Color: Same v₂
- Line/Dashed: Same *v*₃
- Row: Same Ψ_3

æ

ESSTER (Event Shape SorTER)

- Toy Model MC generator
 - Azimuthal angle distribution $\frac{dN}{d\phi} = \frac{N}{2\pi} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi \Psi_n)]\right)$
 - *M* ∈ (300, 3000)
 - Flow multiplicity dependent: $v_n = a_n M^2 + b_n M + c_n$
 - Gaussian smearing
 - Ψ_n independent, uniform distribution
 - Generated 5000 events

Event-Sorting

- Order events according the similarity of the shape of their azimuthal angle histogram using Bayesian statistics
- Dividing events into deciles according to a chosen variable
- Final arrangement in the terms of $\hat{\mu}$ (1 10)

$$\hat{\mu} = \sum_{\mu} \mu P(\mu | \{ n_i \})$$

- Initial assignment error matrix
- Correlation of $\hat{\mu}$ and several variables
- How to initially rotate events?

Ξ.

Average histograms, simple example with v_1 and v_2 only

Average histograms, simple example after sorting

Simple example: comparison with q_2

- Initial rotation: Ψ_2
- Sort: *q*₂
- Each point represents one event
- Lines around integers: Distinct bins

A D A A B A B A B A

æ

Simple example: Errors for initially q_2 sorted events

- Error of the 'original sorting variable' (in this case q₂) is the probability that event from bin β (before) should be in bin α (after)
- If the original sorting was good, we expect \sim 1 around diagonal, \sim 0 elsewhere.
- Not a diagonal
- Possible influence of quadratic dependence v₂ = v₂(M²)
- Dark corners: finite number of bins

æ

Simple example: Elliptic flow

- Correlation v_2 and $\hat{\mu}$: 0.959
- Obvious linear dependence
- v_2 might be a better measure than q_2

Simple example: Elliptic flow

- Correlation v_2 and $\hat{\mu}$: 0.959
- Obvious linear dependence
- v_2 might be a better measure than q_2
- Does not depend on initial sorting! (showing random initial assignment)

Advanced example: Flow up to v_5

- Included flow up to v_5
- Initial rotation: Ψ_2
- Linear v₂ dependence lost
 - Interplay of other flow contributions

- E -

æ

Advanced example: Average histograms before sorting

Advanced example: Average histograms after sorting

Rotation according to Ψ_2 and Ψ_3

- Included flow up to v₅
- Initial rotation:
 - Angle bisector between 𝒱₂ and 𝒱₃
 - Ψ₂ less than π/2 counterclockwise from Ψ₃
 - Flip problem solved

ъ

(D) (A) (A) (A) (A)

Average histograms before sorting

Average histograms after sorting

Conclusion & Outlook

- ESSTER sorts events based on their similarity: appropriate sorting
- q_2 might not be a good measure to sort events
- v_2 might be a better measure than q_2
- Femtoscopy, U+U, Au+Co, He+Au collisions
- Further study of higher harmonics, histogram rotation, AMPT or other models, implementation improvement
- Renata Kopečná, Boris Tomášik: Event shape sorting arXiv: 1506.06776

Backup

Ξ.

Multiplicity for initially q_2 sorted events

- Does not depend on multiplicity, only *shape*!
- Follows v_2 distribution

4 m b 4 m b 4 m b 4 m b

- For every event make $\frac{dN}{d\phi}$ histogram
- Denoting bins as *i*
- Order events according to something (q₂) into deciles

 Calculate the probability that particle is in *ith* bin given the event is in event-bin μ:

イロト イヨト イヨト イヨト

$$P(i|\mu) = \frac{\text{\# of particles in } i^{th} \text{ bin for all events in } \mu}{\text{\# of all particles in all events in } \mu}$$

- Full description of any event *α* in *μ* is set of numbers {*n_i*}
 - Event α in μ is 'binned' according to $\frac{dN}{d\phi}$ as $\{n_1, \dots, n_i, \dots, n_{\#bin}\}$
- For each event we calculate the probability that event in bin μ will have dN/dφ histogram with n_i particles in each angle bin:

$$P(\{n_i\}|\mu) = N! \prod_i \frac{P(i|\mu)^{n_i}}{n_i!}$$

(日) (四) (三) (三)

 We want to know the probability that an event with record {n_i} belongs to the bin μ

$$P(\mu|\{n_i\}) = \frac{P(\{n_i\}|\mu)p(\mu)}{P(\{n_i\})} = \frac{P(\{n_i\}|\mu)p(\mu)}{\sum_{\mu'} P(\{n_i\}|\mu')p(\mu')}$$

• $p(\mu)$ is a *prior*; for deciles $p(\mu) = 1/10$

• This probability uses *all* data: fluctuations caused by 'rare' events are reduced

イロン 人間 とくほ とくほど

• For every event we calculate 'average bin number'

$$\hat{\mu} = \sum_{\mu} \mu P(\mu | \{ n_i \})$$

• Sort according to $\hat{\mu}$

イロン イヨン イヨン イヨン

ъ.

• Return to 1)

• Repeat until the μ bins remains unchanged

[1] S. Lehmann, A. D. Jackson, B. Lautrup: Measures and Mismeasures of Scientific Quality, Arxiv: physics/0512238

[2] R. Lednicky, Finite-size effects on two-particle production in continuous and discrete spectrum, Phys. Part. Nucl. 40 (2009) 307 [nucl-th/0501065].

[3] M. A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, FEMTOSCOPY IN RELATIVISTIC HEAVY ION COLLISIONS: Two Decades of Progress, DOI: 10.1146/annurev.nucl.55.090704.151533.

[4] J. Schukraft, A. Timmins, S. Voloshin: Ultrarelativistic nuclear collisions: event. shape engineering, Phys. Lett. B 719 (2013) 394-398

[5] S. A. Voloshin, A. Poskanzer, R. Snellings, k Collective phenomena in non-central nuclear collisions. 2008. arxiv:0809.2949 *Relativistic Heavy Ion Physics, 23:293–333, 2010,* http://dx.doi.org/10.1007/978-3-642-01539-7_10.

[6] G. Aad et al. (ATLAS collaboration): Measurement of the azimuthal anisotropy for charged particle production in $\sqrt{s_{NN}}=2.76$ TeV lead-lead collisions with the ATLAS detector, Phys.Rev.C 86 (2012) 014907

References

[7] Press, S. James.: Subjective and Objective Bayesian Statistics: Principles, Models, and Applications, ISBN 9780470317945, Wiley 2009

[8] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, 3 edition, 2007.

[9] G. Aad et al. (ATLAS collaboration): Measurement of the azimuthal anisotropy for charged particle production in at $\sqrt{s_{NN}}$ = 2.76 TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 86 (2012) 014907

[10] G. Eyyubova: Charged particle directed flow in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV measured with ALICE at the LHC, EPJ Web of Conferences 70 00075 (2014), DOI: 10.1051/epjconf/20147000075

[11] ROOT|A Data Analysis Framework, http://root.cern.ch, citation date: November 5, 2015

[12] LAPACK - Linear Algebra PACKage, http://www.netlib.org/lapack/, citation date: November 5, 2015