PHENIX results on Bose-Einstein correlation functions

XI Workshop on Particle Correlations and Femtoscopy

Dániel Kincses for the PHENIX Collaboration

Eötvös Loránd University, Hungary

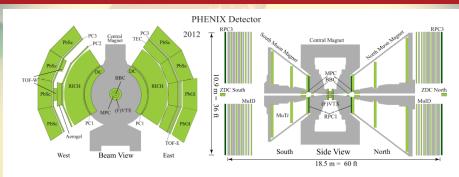
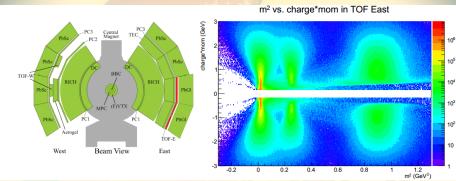


Table of Contents

- The PHENIX Experiment
- Short summary on HBT correlations
- PHENIX HBT results
 - Comparison of charged pion and kaon femtoscopy (PhysRevC.92.034914, 2015-09-23)
 - Beam energy & system size dependence of HBT radii (arXiv:1410.2559, 2014-10-09)
 - Ongoing work: Levy HBT analysis
- Summary

The PHENIX Experiment



The PHENIX detector system

- Observing collisions of p,d,Cu,Au,U
- Charged pion ID from ~0.2 to 2 GeV/c²
- Beam energy scan is important

4 D > 4 A > 4 B > 4 B


The PHENIX Experiment

The PHENIX detector system

- Observing collisions of p,d,Cu,Au,U
- Charged pion ID from ~0.2 to 2 GeV/c²
- Beam energy scan is important

The RHIC Beam Energy Scan

Bose-Einstein correlations - a short summary

 $N_1(p)$, $N_2(p)$ - invariant momentum distributions, the definition of the correlation function:

$$C_2(p_1, p_2) = \frac{N_2(p_1, p_2)}{N_1(p_1)N_1(p_2)} \tag{1}$$

The invariant momentum distributions

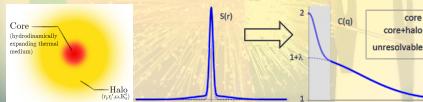
$$N_1(p)-$$
 norm., $N_2(p_1,p_2)=\int S(x_1,p_1)S(x_2,p_2)|\Psi_2(x_1,x_2)|^2\,d^4x_2\,d^4x_1$ (2)

- S(x, p) source function (usually Gauss shaped Lévy is more general)
- Ψ_2 interaction free case $|\Psi_2|^2 = 1 + \cos(qx)$

If $k_1 \simeq k_2 \colon \ \mathit{C}_2 o \mathsf{inverse} \ \mathsf{Fourier\text{-}trf.} o \mathit{S}$

$$x = x_1 - x_2$$

$$q=k_1-k_2$$


$$K = (k_1 + k_2)/2$$

$$C_2(q, K) \simeq 1 + \Big|\frac{\widetilde{S}(q, K)}{\widetilde{S}(0, K)}\Big|^2, \ \widetilde{S}(q, k) = \int S(x, k) e^{iqx} d^4x$$

Sometimes this simple formula fails (cf. experimentally observed oscillations at L3, CMS) see also the talks of A. Bialas at WPCF 2015, WPCF 2014

Final state interactions, resonances

- Final state interactions distort the simple Bose-Einstein picture
 - identical charged pions Coulomb interaction
 - different methods of handling, an usual practice: Coulomb-correction
 - \bullet $C_{B-F}(q) = K(q) \cdot C_{measured}(q)$
 - An other possibility to fit with the effect incorporated in the fitted func.
- Resonance pions reduce the correlation function
- \bullet $S = S_C + S_H$
- Primordial pions Core < 10 fm
- Resonance pions from very far regions Halo

Bolz et al, Phys.Rev. D47 (1993) 3860-3870

T. Csörgő. B. Lörstad and J. Zimányi, Z.Phys. C71 (1996) 491-497

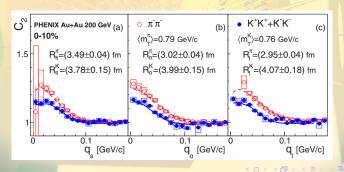
core

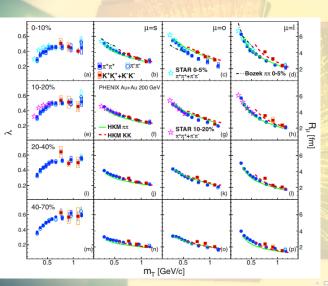
core+halo

The out-side-long system, HBT radii

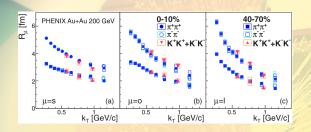
- ullet Corr. func. (with Gaussian source): ${\cal C}_2(q)=1+\lambda\cdot e^{-R_{\mu
 u}^2q^\mu q^
 u}$
- Bertsch-Pratt pair coordinate-system
 - out direction: direction of the average transverse momentum (K_t)
 - long direction: beam direction (z axis)
 - side direction: orthogonal to the latter two
- LCMS system (Lorentz boost in the long direction)
- From the $R_{\mu\nu}^2$ matrix, R_{out} , R_{side} , R_{long} nonzero HBT radii
- Out-side difference $\Delta \tau$ emission duration
- From a simple hydro calculation:

$$R_{out}^2 = \frac{R^2}{1 + \frac{m_T}{T_0}\beta_T^2} + \beta_T^2 \Delta \tau^2$$
 $R_{side}^2 = \frac{R^2}{1 + \frac{m_T}{T_0}\beta_T^2}$

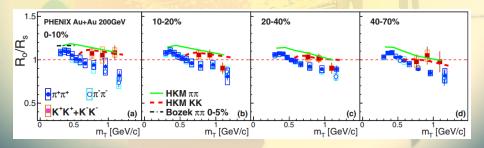

- RHIC: ratio is near one \rightarrow no strong 1st order phase trans.
- S. Chapman, P. Scotto, U. Heinz, Phys.Rev.Lett. 74 (1995) 4400-4403
- T. Csörgő and B. Lörstad, Phys.Rev. C54 (1996) 1390-1403


- Dataset used for the analysis:
 - Run-7, Au+Au, $\sqrt{s_{NN}}$ = 200 GeV, 4.2·10⁹ events
 - Min. bias trigger, at least two hits in each BBC required
 - Additional offline requirements:
 - One ZDC hit on each side
 - Collision vertex position less than $\pm 30~\text{cm}$
 - Single track cuts:
 - 2σ matching cuts in PC3 & PbSc for pions
 - 2.5σ matching cuts in PC3 & PbSc for kaons
 - Particle identification:
 - time-of-flight data from PbSc west, momentum, flight length
 - 2 σ cuts on m^2 distribution
 - π/K separation up to \sim 1 GeV/c
 - Pair-cuts:
 - Pairs associated with hits on the same tower were removed
 - \bullet $(\Delta\phi^\pi>0.07)$ or $(\Delta z^\pi>5$ cm & $\Delta\phi^\pi>0.02)$ or $(\Delta z^\pi>70$ cm)
 - $(\Delta \phi^{K} > 0.04)$ or $(\Delta z^{K} > 4$ cm & $\Delta \phi^{K} > 0.01)$ or $(\Delta z^{K} > 65$ cm)

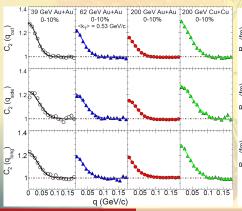
- Both azimuthal-dependent and azimuthally integrated analysis (We only have time for the latter one)
- Fitted function:

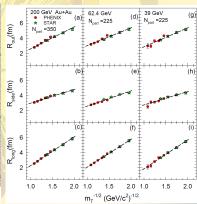

$$C_2(q) = N[\lambda(1 + G(q))F_C + (1 - \lambda)]$$

$$G(q) = e^{-R_s^2 q_s^2 - R_o^2 q_o^2 - R_i^2 q_i^2} \left(\cdot e^{-2R_{os}^2 q_s q_o} \right)$$



- R_s comparable
- R_o, R_l different
- \bullet $\pi^+\pi^+,\pi^-\pi^-$ consistent
- radii from PHENIX andSTAR in agreement
- ullet greater difference in λ
- Comparison with HKM

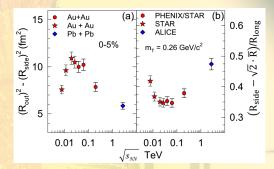

- Radii scale better for k_T
- Longer emission duration for kaons?



Beam energy & system size dependence of HBT radii

PHENIX Collaboration, arXiv:1410.2559

- Corr. func. in 3D, Gaussian fit (details: arXiv:1410.2559)
- \bullet $\pi^+\pi^+$, $\pi^-\pi^-$ data combined
- $1/\sqrt{m_T}$ transverse mass scaling of HBT radii
- Linear dependence for all systems and directions
- Interpolation to common m_T , PHENIX and STAR consistent



Beam energy & system size dependence of HBT radii

PHENIX Collaboration, arXiv:1410.2559

- quantities related to emission duration and expansion velocity
- non-monotonic patterns
- indication of CEP?

- More precise mapping and further detailed studies required
- Is there any other way to find the critical point?
- Maybe Levy exponent $\alpha!$

Ongoing work: PHENIX Levy HBT analysis & future plans

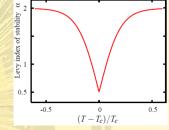
A brief overview

Dataset:

- $\sqrt{s_{NN}}$ =200 GeV Au+Au, min. bias, more than 7 billion events
- Huge statistics, fine p_T binning possible

Goal:

- Detailed shape analysis of 1D two-pion corr. func.
 - Levy source instead of Gauss → better agreement with data


$$\bullet \mathcal{L}(\alpha, R, \mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3q e^{i\mathbf{q}\mathbf{r}} e^{-\frac{1}{2}|\mathbf{q}R|^{\alpha}}$$

- Extraction and analysis of the source parameters
 - Precision measurement of $\lambda(m_T)$, $\alpha_{Levy}(m_T)$, $R_{Levy}(m_T)$

Ongoing work: PHENIX Levy HBT analysis & future plans

The physics case behind the results

- Measurement of $\alpha_{Levy}(m_T)$
 - $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy
 - Results indicate strong deviation from Gaussian ($\alpha \simeq 1.15$)
 - α_{Levy} actually identical to critical exponent η
 - At the critical point: $\eta = 0.5$
 - Change in α_{Levy} related to the proximity of CEP
 - Plan: repeating the measurements at lower energies
 - A possible way of finding the Critical End Point?

Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67, nucl-th/0310042 Csörgő, Hegyi, Novák, Zajc, AIP Conf.Proc. 828 (2006) 525, nucl-th/0512060 Csörgő, arXiv:0903.0669 [nucl-th]

Ongoing work: PHENIX Levy HBT analysis & future plans

The physics case behind the results

- Precision $\lambda(m_T)$ measurement
 - Observed decrease at small $p_T \rightarrow$ increase of halo fraction
 - May be connected to mass modifications (c.f. chiral restoration)
 - Core fraction: $f_C = N_{core}/N_{total}$
 - $\lambda_{2pion} = f_C^2$, $\lambda_{3pion} = 3f_C^2 + 2f_C^3$
 - Three-pion analysis \rightarrow extract λ_{3pion}
 - λ_{2pion} vs λ_{3pion} may reveal deviations from core-halo picture
 - Possible partially coherent pion production?
- T. Kunihiro, Phys. Lett. B219 (1989), 363
- Z. Huang and X-N. Wang, Phys.Rev. D53 (1996) 5034-5041

Kapusta, Kharzeev, McLerran, Phys.Rev. D53 (1996) 5028, hep-ph/9507343 Vance, Csörgő, Kharzeev, Phys.Rev.Lett. 81 (1998) 2205, nucl-th/9802074

Vance, Csorgo, Knarzeev, Phys.Rev.Lett. 81 (1998) 2205, nucl-th/9802074 Csörgő, Vértesi, Sziklai, Phys.Rev.Lett. 105 (2010) 182301, arXiv:0912.5526

Csörgő, Zimányi, Phys.Rev.Lett. 80 (1998) 916, hep-ph/9705433

Summary I

- Recent PHENIX HBT results:
 - Comparison of charged pion and kaon femtoscopy PhysRevC.92.034914
 - 200 GeV Au+Au, Gaussian fits, azimuthally dep./int. analysis
 - m_T scaling holds well for R_s
 - visible differences for R_0 , R_l between pions & kaons
 - differences larger in more central collisions
 - k_T scaling works well for all radii
 - R_o/R_s is larger for kaons \rightarrow different $\Delta \tau$?
 - Beam energy & system size dependence of HBT radii
 - $1/\sqrt{m_T}$ transverse mass scaling of HBT radii
 - Linear dependence for all systems and directions, PHENIX & STAR consistent
 - Specific combinations of radii vs. $\sqrt{s_{NN}}$ show non-monotonic behaviour
 - Indication of CEP? further detailed studies required

Summary II

- Ongoing work: Levy HBT analysis
 - Dataset: Run-10 200 GeV Au+Au, ~7 billion evts.
 - Goal: precise measurement of Levy source parameters
 - Future plans: 3 pion correlations, lower energies
 - Expected physics info: mass modifications, partial coherence, CEP

Thank you for your attention!