

WARSAW UNIVERSITY OF TECHNOLOGY

Two-particle proton correlations at BES energies

Sebastian Siejka

Warsaw University of Technology Faculty of Physics

For the STAR collaboration

XI Workshop on Particle Correlations and Femtoscopy

Warsaw, Poland

November 03 - 07, 2015

Outline

- 1) Basics of proton femtoscopy
- 2) Cuts used and monitors for Au+Au collisions at $\sqrt{(s_{NN})}$ = 39 GeV
- 3) Results from Beam Energy Scan:

3a) Au+Au collisions at $\sqrt{(s_{NN})} = 39 \text{ GeV}$

3b) Au+Au collisions at $\sqrt{(s_{NN})} = 11.5 \text{ GeV}$

3c) Au+Au collisions at $\sqrt{(s_{NN})} = 7.7 \text{ GeV}$

4) Summary and conclusions

Few words about femtoscopy

Single- and two- particle distributions

$$P_1(p) = E \frac{dN}{d^3 p} = \int d^4 x S(x, p)$$

$$P_{2}(p_{1}, p_{2}) = E_{1}E_{2}\frac{dN}{d^{3}p_{1}d^{3}p_{2}} = \int d^{4}x_{1}S(x_{1}, p_{1})d^{4}x_{2}S(x_{2}, p_{2})\Phi(x_{2}, p_{2}|x_{1}, p_{1})$$

The correlation function $C(p_1, p_2) = \frac{P_2(p_1, p_2)}{P_1(p_1)P_1(p_2)}$

5

Proton-(anti)proton

We can calculate Radii using the correlation functions.

The width of the Quantum Statistics part in correlation proportional to the Radius of

Cuts used

Cut	Range/value
Momentum (p)	0.4 < p < 3.0 [GeV/c]
Transverse momentum (p_{T})	0.4 < p _⊤ < 2.5 [GeV/c]
Pseudorapidity (η)	-0.5 < η < 0.5
Distance of closest approach (DCA)	DCA < 1 [cm]
Mass window	0.76 < m < 1.03 [GeV/c^2]
Νσ	-3.0 < N < 3.0
Z vertex:	[cm]
- 7.7 GeV	-70 < z < 70
- 11.5 GeV	-50 < z < 50
- 39 GeV	-30 < z < 30

+ proper event selection

Analysis Au+Au collisions @ 39 GeV

Multiplicity monitor

Total: 101 M events

60

z [cm]

63 M events - centrality 30-80%
26 M events - centrality 10-30%
13 M events - centrality 0-10%

Analysis Au+Au collisions @ 39 GeV

Analysis Au+Au collisions @ 39 GeV

Proton-Antiproton CFs

Antiproton-Antiproton CFs

not available due to low statistics

Proton-Antiproton CFs

not available due to low statistics

Antiproton-Antiproton CFs

not available due to low statistics

Analysis Au+Au collisions MB comparison

Antiproton-Antiproton pairs have been added to Proton-Proton pairs in order to have Identical Baryon CFs with increased statistics

Summary & Conclusions

- (anti)proton femtoscopy sensitive to Quantum Statistic Effects and Final State Interactions
- Different strong interaction due to annihilation processes

- Data analysed: 7.7 GeV, 11.5 GeV, 39 GeV

- proton proton, antiproton antiproton and proton antiproton systems checked
 - → The range of correlations different for identical and nonidentical particle combinations
- The results allow for qualitative source sizes observation:

Radii increase with $\sqrt{(s_{NN})}$ at fixed centrality

 $R_{p-p}(39\,GeV) > R_{p-p}(11.5\,GeV) > R_{p-p}(7.7\,GeV)$

Radii increase with centrality at fixed $\sqrt{(s_{NN})}$

$$R_{p-p}(0-10) > R_{p-p}(10-30) > R_{p-p}(30-80)$$

Thank You for Your attention!

BACKUP

Analysis Au+Au collisions @ 200 GeV

16

Analysis Au+Au collisions @ 200 GeV

