

Charged kaon femtoscopy with ALICE at LHC

Malinina Ludmila SINP MSU-JINR for the ALICE collaboration

Nov. 2015, WPCF 2015, Warsaw, Poland XI Workshop on Particle Correlations and Femtoscopy

- Introduction
- Motivation
- ALICE at LHC
- Analysis details
- Results
 - 1D analysis
 - 3D analysis
- Summary

- Study of m_{-} -dependence of correlation radii.
- Strong constraints for hydrodynamic models (models working well for pions should work for heavier mesons and baryons also).
- KK suffer less from the resonance contributions than $\pi\pi \rightarrow$ clearer signal
- Study of $K^{\pm}K^{\pm}$ and $K_{0}^{s} K_{0}^{s} \rightarrow$ consistency check
 - Different sources of correlations: Quantum Statistics (QS), Coulomb and Strong Final State Interactions (FSI)
 - Overlapping $m_{\rm T}$ ranges
 - Different systematics

Motivation: m_-dependence of correlation radii

- " m_{τ} -scaling": $R \sim m_{\tau}^{a}$, $m_{T} = \sqrt{m^{2} + p_{T}^{2}}$
- Hydrodynamic models predict exact "m_T-scaling" for R_{long} with a =-1/2 (A.N. Makhlin, Yu.M. Sinyukov, Sov. J. Nucl. Phys.46 (1987) 345; Z. Phys.C 39 (1988) 69... Yu. M. Sinyukov, Nucl. Phys. A 498 (1989) 151.):
 - Negligible transverse flow
 - Longitudinal boost invariance
 - Common freeze-out
- Approximate "m_T-scaling" for different particle species for R_{long}, R_{side}, R_{out} with different a was predicted in (A. Kisiel, M. Galazyn, P. Bozek, Phys.Rev. C90 (2014) 064914)
 - Indication of flow dominated freeze-out scenario
- Strong violation of " m_{T} -scaling" was predicted in (V.M. Shapoval, P. Braun-Munzinger,

Iu.A. Karpenko, Yu.M. Sinyukov, Nucl.Phys. A 929 (2014) 1.) due to :

- Strong transverse flow & resonance decays influence & rescattering phase
- " k_{T} -scaling" was predicted instead
- Extraction of emission time from fit $R_{long}^{2}(m_{T})$ using formula generalized for

any strong transverse flow (Yu. Sinyukov, V.Shapoval, V.Naboka, arxiv:1508.01812),

- Indication on importance of rescattering phase

ALICE at LHC

Tracking and vertex

Time Projection Camber (TPC)& Inner Tracking System (ITS)

Centrality determination

•TPC and Time of Flight

Nov. 2015, L.V. Malinina

WPCF2015, Warsaw, Poland

K^{\pm} and $K^0_{\ s}$ CFs

Results from ArXiv.org:1506.07884

- Example $K^{\pm}K^{\pm} \& K^{0}_{s}K^{0}_{s}$ CFs are shown
- CFs corrected for momentum resolution and purity
- Bose-Einstein enhancement seen for both
- Coulomb FSI: drop at low q in K[±]K[±]
- Strong FSI: dip below C=1 in K⁰_sK⁰_s
- Curves corresponds to best fit: K[±]K[±] : Bowler-Sinyukov formula:

$$C(q) = N[1 - \lambda + \lambda K(q)(1 + \exp(-R_{inv}^2 q^2))],$$

N norm. factor, λ correlation strength, *K*(*q*) symmetrized Coulomb factor

$$C_{s}^{0}K_{s}^{0}: C(q) = N[1-\lambda+\lambda C'(q)],$$

$$C'(q) = 1 + \exp(-R_{inv}^2 q^2) + C_{strongFSI}(q, R)$$

Strong FSI due to resonances f₀(980) and a₀(980)

Nov. 2015, L.V. Malinina

R_{inv} radii vs m_{τ} for $\pi^{\pm}\pi^{\pm}$, $K^{\pm}K^{\pm}$, $K_{s}^{0}K_{s}^{0}$, pp and \overline{pp}

Results from ArXiv.org:1506.07884

- R_{inv} and λ for $\pi^{\pm}\pi^{\pm}$, $K^{\pm}K^{\pm}$, $K^{0}_{s}K^{0}_{s}$, pp and \overline{pp} vs m_{τ} for several centralities
- Radii decrease with $m_{\tau} \rightarrow$ radial flow
- Increase size with increasing centrality → simple geometric picture of the collisions.
- $R_{\pi} > R_{\kappa}$ due to pion Lorrentz factor
- R_{p} compatible with R_{k} at same m_{T}
- \bullet All λ lie mostly in 0.3-0.7 due to long-lived resonances, non-Gaussian shape.
- No significant centrality dependence
- λ_{π} are lower than λ_{κ} due to the stronger influence of resonances

$K^{\pm}K^{\pm}$ and $K^{0}_{s}K^{0}_{s}$ in Pb-Pb: HKM model

3D K[±]K[±] & $\pi\pi$ radii versus m_{-}

- This difference increases for more central collisions;
- The effect is more important for R₁

• Radii scale better with k_{τ} than with m_{τ} according with HKM predictions

(V. Shapoval, P. Braun-Munzinger, Iu.A. Karpenko, Yu.M. Sinyukov, Nucl.Phys. A 929 (2014) 1);
 Similar observations were reported by PHENIX at RHIC (arxiv:1504.05168).

R_{out}/R_{side} vs m_{T} for K[±]K[±] & $\pi\pi$

ALICE

Pion results from ArXiv.org:1507.06842

ALI-PREL-96551

- $R_{out}/R_{side}(\pi) \sim 1$ for low k_{T} ; slowly decreasing with k_{T}
- R_{out}/R_{side} (π) smaller than at RHIC (1.1) \rightarrow stronger radial flow and emission point r:t correlations according to (A. Kisiel, W. Broniowski, M. Chojnacki, and W. Florkowski, PRC 79 (2009), I. Karpenko and Y. Sinyukov, PLB 688 (2010) 5054)

• Indication : $R_{out}/R_{side}(K) > R_{out}/R_{side}(\pi) \rightarrow different r:t correlations for pions and kaons$

Similar observations were reported by PHENIX at RHIC (arxiv:1504.05168).

Comparison with (3+1)D Hydro+THERMINATOR2

- Model (A. Kisiel, M. Galazyn, P. Bozek, Phys.Rev. C90 (2014) 064914) includes hydrodynamics and resonances decays
- Good description of pion radii vs. m_τ
- Underestimation of kaon radii

• Model demonstrates approximate $R \sim m_{T}^{a}$ scaling for $\pi \& K$, with "**a**" being different for

R_{out}, R_{side}, R_{long} (A. Kisiel, M. Galazyn, P. Bozek, Phys.Rev. C90 (2014) 064914)

Comparison with HKM for 0-5% centrality

• HKM model with re-

scatterings (M. Shapoval, P. Braun-Munzinger, Iu.A. Karpenko, Yu.M. Sinyukov, Nucl.Phys. A 929 (2014) 1.) describes well ALICE π & K data.

- HKM model w/o re-scatterings demonstrates approximate m_τ scaling for π & K, but does not describe ALICE π & K data
- The observed deviation from $m_{_{T}}$ scaling is explained in

(M. Shapoval, P. Braun-Munzinger, Iu.A. Karpenko, Yu.M. Sinyukov, Nucl.Phys. A 929 (2014) by essential transverse flow & hadronic rescattering phase.

• HKM model slightly underestimates R_{side} overestimates R_{out}/R_{side} ratio for π

Nov. 2015, L.V. Malinina

ALI-PREL-96575

Extraction of emission time from fit $R_{1000}^{2}(m_{T})$

The new formula for extraction of the maximal emission time for the case of strong transverse flow was used (Yu. Sinyukov, V.Shapoval, V.Naboka, arxiv:1508.01812)

on ± 0.03 GeV & free α_{π} , α_{κ} , were used; systematic errors ~ 1 fm/c

• Indication: $\tau_{\pi} < \tau_{\kappa}$. Possible explanations (arxiv:1508.01812): HKM includes hadronic rescattering phase (UrQMD cascade): e.g. $K\pi \rightarrow K^*(892) \rightarrow K\pi$, $KN \rightarrow K^*(892)X$; (K*(892) lifetime 4-5 fm/c) $[\pi N \rightarrow N^*(\Delta)X, N^*(\Delta) \rightarrow \pi X$ (N*s(Δ s)- short lifetime)]

Nov. 2015, L.V. Malinina

WPCF2015, Warsaw, Poland

Summary

- The study performed by ALICE Collaboration on the femtoscopic correlations of heavy particles is a good complement to the pion femtoscopy as it allows one to distinguish between different model scenarios.
- 1D π[±]π[±], K[±]K[±], K₀^sK₀^s, pp and pp femtoscopic radii were measured for several centrality and m_τ bins in Pb-Pb collisions at 2.76 TeV:
 decrease with increasing m_τ and decreasing system size was observed
- 3D $\pi^{\pm}\pi^{\pm}$ and K^{\pm}K^{\pm} femtoscopic radii were measured for several centrality and m_{τ} bins in Pb-Pb collisions at 2.76 TeV:
 - decrease with increasing m_{τ} and decreasing system size;
 - breaking of approximate m_{τ} -scaling expected by pure hydro-dynamical models;
 - scaling of pion and kaon radii with k_{τ} as it was predicted by HKM ;
 - indication of $R_{out}/R_{side}(K) > R_{out}/R_{side}(\pi)$
 - indication of $\tau_{\pi} < \tau_{\kappa}$ extracted from fit R_{long}^{2} vers. m_{τ}
- HKM model describes 3D $\pi^{\pm}\pi^{\pm}$ and K^{\pm}K^{\pm} femtoscopic radii well
- Importance of hadronic rescattering phase for explanation of breaking of $m_{\rm T}$ -scaling

Additional slides

• K^{\pm} : 0.15< p_{τ} <1.5 GeV/c, $|\eta|$ <0.8, TCP and TOF(p>0.5GeV/c) n σ PID (n<3)

• Single and pair purity: main contamination (0.4 GeV/c) comes form e[±]

• $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$ (ct = 2.7cm)

Daughter π : p_{τ} >0.15 GeV/c, $|\eta|$ <0.8

TPC and TOF (*p*>0.8 GeV/c) nσ PID K⁰_s: |η|<0.8, π⁺π⁻ DCA<0.3cm,

DCA to prim. vertex <0.3cm

decay length<30 cm, cos(point. angle)>0.99 $0.480 < m_{inv} < 0.515 \text{ GeV/c}^2$; Purity >95%

Nov. 2015, L.V. Malinina

Introduction

Correlation femtoscopy : measurement of space-time characteristics R, cT ~fm of particle production using particle correlations due to the effects of quantum statistics (QS) and final state interactions (FSI)

> • Two particle Correlation Function (CF): Theory: $C(q) = \frac{N_2(p_1, p_2)}{N_1(p_1) \cdot N_2(p_1)}, C(\infty) = 1$ Experiment: $C(q) = \frac{S(q)}{B(q)}, q = p_1 - p_2$ S(q) – pairs from same event B(q) – pairs from different event

Parametrization:

1D: $C(q_{inv}) = 1 + \lambda \exp(-R^2 q_{inv}^2)$, *R* Gaussian radius in Pair Rest Frame (**PRF**), λ correlation strength parameter

3D: $C(q_{out}, q_{side}, q_{long}) = 1 + \lambda \exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2)$ where both **R** and **q** are in Longitudinally Co-Moving Frame (LCMS) long || beam; out || transverse pair velocity v_{τ} ; side normal to out, long

_zp₁

[⊿]P1

R