

Two-Particle Correlations in pp Collisions at 13 TeV Measured with CMS

Sunil M Dogra SPRACE - IFT (UNESP) For the CMS Collaboration

Outline

- Two particle correlations in p+p, p+Pb and Pb+Pb
- First results in p+p collisions at 13 TeV
 - Two particle correlation results
 - Associated yields
 - □ p_T and multiplicity dependence
- Anisotropy Fourier Harmonics from 7 TeV
 - Long-range correlations for charged hadrons, K_s^0 and Λ particles
 - Jet contributions studied and subtracted multi-particle azimuthal correlations
 - p_T and event multiplicity dependence
- Summary

Two particle correlations in p+p, p+Pb and Pb+Pb

- The long-range same-side correlations seen in all systems at the LHC
- Interpretation:
 - Heavy ions: hydrodynamic flow
 - Small systems: ??

WPCF 2015

Extensive studies in pPb and PbPb collisions

- Results supporting collectivity:
 - v_n with particle identification
 - Mass ordering
 - Similar picture in AA Collisions
- Multiparticle correlations:
 - Even 8-particle and many-particle correlations give the same v_2 (jet correlations suppressed)

WPCF 2015

Sunil M. Dogra

Small Systems —> Pushing the limits

- Small fraction of p+p and p+Pb collisions produce a high number of charged particles same as mid-central heavy ions
- The initial geometry and its fluctuations is very different from heavy ions
- What does the final state (azimuthal asymmetries) tell us?

More than 420 charged particles in pPb

More than 200 charged particles in pp collisions

collisions at 5.02 TeV

Compact Muon Solenoid Experiment

Defining Two Particle Correlations

Signal pair distribution Trigger particle: a hadron in a certain p_{τ} bin Same- and mixed-event pair distributions 10.03 $S(\Delta\eta,\Delta\phi) = \frac{1}{N_{\rm trig}} \frac{d^2 N^{\rm same}}{d\Delta\eta d\Delta\phi}$ Background pair distribution $B(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N^{\text{mix}}}{d\Delta \eta d\Delta \phi}$ <u>⊴</u>_0.02 Associated Yield per trigger m 0.01 $\frac{1}{N_{\text{trig}}} \frac{d^2 N^{\text{pair}}}{d\Delta \eta d\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$ All CMS pp \s = 13 TeV, N____ ≥ 105 1 < p_ < 3 GeV/c • Fourier-coefficients V_{nA} from $|\Delta\eta| > 2$: $\frac{1}{N_{\text{trig}}} \frac{\mathrm{d}N^{\text{pair}}}{\mathrm{d}\Delta\phi} = \frac{N_{\text{assoc}}}{2\pi} \left[1 + \sum_{n} 2V_{n\Delta} \cos(n\Delta\phi) \right]$ Sunil M. Dogra WPCF 2015

2D Correlation in pp collisions at 13 TeV

- Features
 - Jet peak (truncated)
 - Away Side back-to-back Jet correlations
 - Long range near side correlation "ridge"

Sunil M. Dogra

1Dimension Projection and Yield Extraction

• ZYAM procedure: Zero Yield At Minimum (constant subtracted) in order to comparisons

WPCF 2015

Sunil M. Dogra

Projection in 1Dimension

• Near-side long range correlated yield increases with multiplicity WPCF 2015 Sunil M. Dogra

Associated Yield vs. p_T and multiplicity

- No dependence on collision energy
- Peak between 1 and 2 GeV/c
- Caution: ZYAM can flatten out the N_{trk} -dependence at low N_{trk}

WPCF 2015

Comparison pp, Pb and PbPb

- Strong system size dependence
- At the same multiplicity,
 - Pb+Pb: ~10 times larger yield
 - p+Pb: ~4 times larger yield

WPCF 2015

Lessons

- So far what we learnt in pp collisions
 - There is no collision energy dependence of the associated yields
 - There is a rise and fall as a function of pT
- Can we go more deeply into the question of what is the mechanism creating the "ridge" in p+p collisions, experimentally?
- For that, much more data is needed, we have to go back to our high-statistics 7 TeV p+p sample...

Projection to 1D and Fourier fit

 Two particle correlation functions projected in ridge range (|Δη|>2), fit by Fourier decomposition to get V_{nΔ}

$v_{2\Delta}$ and $v_{3\Delta}$ vs. Multiplicity

- MC: Only jet correlations.
- Data: Very different trend.
- V_{3Δ}
 - MC: does not predict positive $v_{3\Delta}$
 - − Positive v_{3Δ} −> new phenomena! WPCF 2015 Sunil M. Dogra

Jet contributions

After Jet Contribution Corrections

 $V_{n\Delta}$ after subtraction: $V_{1\Delta}^{sub} \approx 0.0003$ $V_{2\Delta}^{sub} \approx 0.0042$ $V_{3\Delta}^{sub} \approx 0.0008$

- Assumptions in this procedure:
 - $_$ at very low multiplicity $V_n \, is$ dominated by jets
 - jet-like correlation is not modified from low to high multiplicity
 - no decorrelation between near and away side jets
- "Double ridge" structure similar to pPb and PbPb WPCF 2015 Sunil M. Dogra

After Jet Subtraction: $v_{n\Delta}$

- V₂₀ shows an increasing trend after subtraction
- V_{3A} is always positive
- Subtraction also brings PYTHIA model curves to zero

WPCF 2015

Sunil M. Dogra

Results: v₂ vs. Multiplicity

- V₂ (pp) is around 0.04 at high multiplicity
- Hierarchy: $v_2(pp) < v_2(pPb) < v_2(PbPb)$
- In a hydro picture: due to very different initial geometry WPCF 2015 Sunil M. Dogra

Results: v_3 vs. Multiplicity

- In a hydro picture: due to different fluctuations of the initial geometry
- Constraining the shape (fluctuations) of the proton WPCF 2015

Sunil M. Dogra

V₀ Reconstruction and Correlations

Results: pid v_2 vs. p_T

- No mass dependence of v₂ from jet correlation at low multiplicity
 - Dominated by back-to-back jets
- Mass ordering in low p_T region at high multiplicity
- Similar to A+A and p+A collisions! WPCF 2015 Sunil M. Dogra

Results: 4-Particle Correlations

 4-particle correlations studied with the cumulant method

$$c_{2}\{4\} = \left\langle \left\langle e^{-2i(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4})} \right\rangle \right\rangle$$
$$-2 \times \left\langle \left\langle e^{-2i(\phi_{1}-\phi_{2})} \right\rangle \right\rangle^{2}$$
$$v_{2}\{4\}^{4} = -c_{2}\{4\}$$

- c₂{4} decreases with multiplicity, similarly to pPb
- Not (yet) significant negative signal (which would mean a v₂{4} signal, collectivity...)

Summary

- First measurements of two particle correlation at 13 TeV in pp collisions
- Second/order (v_2) and third/order (v_3) anisotropy of charge hadron, $K^0_{\ S}$ and Λ for high multiplicity pp collisions
- Multiplicity dependent (charge hadron)
 - overall $v_2(pp) < v_2(pPb) < v_2(PbPb)$
 - v₃(pp) deviates from v₃(pPb & PbPb) at high multiplicity
- Transverse momentum dependent (PID)
 - Mass ordering clearly observed in low p_T region

CMS Results on Two Particle Correlation

- Other CMS results on correlations and more:
 - ✓ https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN
 - ✓ https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ

Thank you

Systematics

Systematic uncertainty sources	Abs. uncertainty ($\times 10^{-3}$)
Track quality requirements	0.6
Trigger efficiency	1.5
Correction for tracking efficiency	< 0.08
Effect of pile-up events	0.6
Vertex selection	1.0
ZYAM procedure	0.7
Total	2.1

1D Projections and Jet Subtraction

 The procedure can be repeated, pairing a V^o and a hadron

 Jet Subtraction: same way as it was done for charged hadrons

Results: pid v2 and NCQ Scaling

No mass dependence of v_2 from jet correlation at low multiplicity

Dominated by back-to-back jets

- Mass ordering in low p_T region at high multiplicity
- Similar to A+A and p+A collisions! WPCF 2015 Sunil M. Dogra