Theoretical Concepts in Particle Physics (1)

Yuval Grossman

Cornell
What is HEP?
What is HEP

Find the basic laws of Nature

More formally

\[\mathcal{L} = ? \]

- We have quite a good answer
- It is very elegant, it is based on axioms and symmetries
- We use particles to answer this question
- Particle physics is a tool to understand Nature
What is mechanics?

- Answer the question: what is $x(t)$?
- A system can have many DOFs, and then we seek to find $\vec{x}(t) \equiv x_1(t), x_2(t),...$
- Once we know $\vec{x}(t)$ we know any observable
- Solving for $q_1 \equiv x_1 + x_2$ and $q_2 \equiv x_1 - x_2$ is the same as solving for x_1 and x_2
- The idea of generalized coordinates is very important

How do we solve mechanics?
How do we find $x(t)$?

$x(t)$ minimizes something

- This is an axiom
- The thing that $x(t)$ minimized is called “the action” and is denoted by S
- There is one action for the whole system
- Similar to a minimum of a function

\[\min[f(x)] \Rightarrow x_0, \quad \min[S(x(t))] \Rightarrow x_0(t), \]

- The condition for a minimum of a function is $\frac{df(x)}{dx} = 0$. What is the equivalent one for a minimum of an action?
What is S?

$$S = \int_{t_1}^{t_2} L(x, \dot{x}) dt, \quad \dot{x} \equiv \frac{dx}{dt} = v$$

The solution of the requirement that S is minimal is given by the E-L equation

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x}$$

Once we know L we can find $x(t)$ up to initial conditions.

To find a minimum of function we solve an algebraic eq. For the action we have a differential eq.

Mechanics is reduced to the question “what is L?”
An example: Newtonian mechanics

We assume particle with one DOF and

\[L = \frac{mv^2}{2} - V(x) \]

- We use the E-L equation

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x} \quad L = \frac{mv^2}{2} - V(x) \]

- The solution is \(-V'(x) = m\dot{v}\), aka \(F = ma\)
- Here \(F = ma\) is the output, not the starting point!
- So how do we find what is L?
What is L?

L is the most general one that is invariant under some symmetries.

We (again!) rephrase the question. Now we ask what are the symmetries of the system that lead to L.
Example of symmetries

What are the symmetries that give

\[L = \frac{mv^2}{2} - V(x) \]

- In 1d, if we require \(x \rightarrow -x \) invariant what can we say about \(V(x) \)?
- In 3d, if we require rotation invariant?
- In 1d with two particles, if we require \(x_1 \rightarrow x_1 + C \) and \(x_2 \rightarrow x_2 + C' \) invariant?
- What about the kinetic term, \(mv^2/2 \)?
- (homework) \(x_1 \rightarrow -3x_2 \) and \(x_2 \rightarrow -x_1/3 \)?
What is field theory
What is a field?

- In math: something that has a value in each point. We can denote it as $\phi(x, t)$
 - Temperature (scalar field)
 - Wind (vector field)
 - Mechanical string (?)
 - Density of people (?)
 - Electric and magnetic fields (vector fields)

How good is the field description of each of these?

- In physics a field used to be associated with a source, but now we know that fields are fundamental
An (familiar) example: the EM field

Consider $E(x, t)$. It obeys the wave equation

$$\frac{\partial^2 E(x, t)}{\partial t^2} = c^2 \frac{\partial^2 E(x, t)}{\partial x^2}$$

The solution is (φ_0 depends on IC)

$$E(x, t) = A \cos(\omega t - kx + \varphi_0), \quad \omega = ck$$

Some important implications of the result

- Each mode has its own amplitude, $A(\omega)$
- The energy in each ω is conserved
- The superposition principle

Are the statements above exact?
How to deal with generic field theories

- \(\phi(x, t) \) has an infinite number of DOFs. It can be an approximation for many (but finite) DOFs
- To solve mechanics of fields we need to find \(\phi(x, t) \)
- Here \(\phi \) is the generalized coordinate, while \(x \) and \(t \) are treated the same (nice!)
- We still need to minimize \(S \)

\[
S = \int \mathcal{L} dx dt \quad \mathcal{L}[\phi(x, t), \phi'(x, t), \dot{\phi}(x, t)]
\]

- We usually require Lorentz invariant (and use \(c = 1 \))

\[
S = \int \mathcal{L} d^4 x \quad \mathcal{L}[\phi(x, t), \partial_\mu \phi(x_\mu)]
\]
Solving field theory

We also have an E-L equation for field theories

\[\partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \right) = \frac{\partial \mathcal{L}}{\partial \phi} \]

- We have a way to solve field theory, just like mechanics. Give me \(\mathcal{L} \) and I can know everything!
- Just like in Newtonian mechanics, we want to get \(\mathcal{L} \) from symmetries!
Free field theory

- The "kinetic term" is promoted

\[T \propto \left(\frac{dx}{dt} \right)^2 \Rightarrow T \propto \left(\frac{d\phi}{dt} \right)^2 - \left(\frac{d\phi}{dx} \right)^2 \equiv (\partial_\mu \phi)^2 \]

- Free particles, and thus free fields, only have kinetic terms

\[\mathcal{L} = (\partial_\mu \phi)^2 \Rightarrow \frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 \phi}{\partial t^2} \]

- An \(\mathcal{L} \) of a free field gives a wave equation

- As in Newtonian mechanics, what used to be the starting point, here is the final result

- Why did we get it?
Harmonic oscillator
The harmonic oscillator

Why do we care so much about harmonic oscillators?

- Because we really care about springs?
- Because we really care about pendulums?
The harmonic oscillator

Why do we care so much about harmonic oscillators?

- Because we really care about springs?
- Because we really care about pendulums?

Because almost any function around its minimum can be approximated as a harmonic function!

- Indeed, we usually expand the potential around one of its minima
- We identify a small parameter, and keep only few terms in a Taylor expansion
Classic harmonic oscillator

\[V = \frac{kx^2}{2} \]

We solve and get

\[x(t) = A \cos(\omega t) \quad k = m\omega^2 \]

- The period does not depend on the amplitude
- Energy is conserved

Which of the above two statements is a result of the approximation of keeping only the harmonic term in the expansion?
Coupled oscillators
Coupled oscillators

- There are normal modes
- The normal modes are not “local” as in the case of one oscillator
- The energy of each mode is conserved
- This is an approximation!
- Once we keep non-harmonic terms energy moves between modes

\[V(x, y) = \frac{k_1 x^2}{2} + \frac{k_2 y^2}{2} + \alpha x^2 y \]

- What determines the rate of energy transfer?
Things to think about

- http://lepp.cornell.edu/~yuvalg/CERNsummer/
- Relations harmonic oscillators and fields?
- When can we treat an oscillator as harmonic?