Theoretical Concepts in Particle Physics (4)
 Yuval Grossman

Cornell

Last lecture...

- Perturbation theory
- Particle decay and interaction are described by perturbation theory
- We started to talk about SHO perturbation theory

Two SHOs with small α

$$
V(x, y)=\frac{k x^{2}}{2}+\frac{4 k y^{2}}{2}+\alpha x^{2} y \quad \omega_{y}=2 \omega_{x}
$$

- Consider $|i\rangle=|0,1\rangle$
- Since $\omega_{y}=2 \omega_{x}$ only $f=|2,0\rangle$ is allowed by energy conservation and by the perturbation

$$
\mathcal{A} \sim\langle 2,0| \alpha x^{2} y|0,1\rangle \sim \alpha\langle 2,0|\left(a_{x}+a_{x}^{\dagger}\right)\left(a_{x}+a_{x}^{\dagger}\right)\left(a_{y}+a_{y}^{\dagger}\right)|0,1\rangle
$$

- a_{y} in y annihilates the y "particle" and $\left(a_{x}^{\dagger}\right)^{2}$ in x^{2} creates two x "particles"
- It is a decay of a particle y into two x particles with width $\Gamma \propto \alpha^{2}$ and thus $\tau=1 / \Gamma$

Even More PT

$$
H_{1}=\alpha x^{2} z+\beta x y z \quad \omega_{z}=10, \omega_{y}=3, \omega_{x}=1
$$

- Calculate $y \rightarrow 3 x$ using 2nd order PT

$$
\mathcal{A} \sim\langle 3,0,0| \mathcal{O}|0,1,0\rangle \quad \mathcal{O} \sim \sum \frac{\langle 3,0,0| V^{\prime}|n\rangle\langle n| V^{\prime}|0,1,0\rangle}{E_{n}-E_{0,1,0}}
$$

- Which intermediate states? $|1,0,1\rangle$ and $|2,1,1\rangle$

$$
\begin{aligned}
& \text { - } \mathcal{A}_{1}=|0,1,0\rangle \xrightarrow{\beta}|1,0,1\rangle \xrightarrow{\alpha}|3,0,0\rangle \\
& \text { - } \mathcal{A}_{2}=|0,1,0\rangle \xrightarrow{\alpha}|2,1,1\rangle \xrightarrow{\beta}|3,0,0\rangle
\end{aligned}
$$

- The total amplitude is then

$$
\mathcal{A} \propto \alpha \beta\left(\frac{\#}{\Delta E_{1}}+\frac{\#}{\Delta E_{2}}\right) \propto \alpha \beta\left(\frac{\#}{8}+\frac{\#}{12}\right)
$$

Closer look

$$
V^{\prime}=\alpha x^{2} z+\beta x y z \quad \omega_{z}=10, \omega_{y}=3, \omega_{x}=1
$$

- We look at $\mathcal{A}=|0,1,0\rangle \xrightarrow{\beta}|1,0,1\rangle \xrightarrow{\alpha}|3,0,0\rangle$

$$
\mathcal{A} \propto \frac{\alpha \beta}{\Delta E_{z}}
$$

Feynman diagrams

Using PT for fields

- For SHOs we have $x_{i} \sim a_{i}+a_{i}^{\dagger}$
- For fields we then have

$$
\phi \sim \int\left[a(k)+a^{\dagger}(k)\right] d k
$$

Quantum field = creation and annihilation operators

Feynman diagrams

- A graphical way to do perturbation theory with fields
- Unlike SHOs before, a particle can have any energy as long as $E \geq m$
- Operators with 3 or more fields generate transitions between states. They give decays and scatterings
- Decay rates and scattering cross sections are calculated using the Golden Rule
- Amplitudes are calculated from \mathcal{L}
- We generate graphs where lines are particles and vertices are interactions

Examples of vertices

$$
\mathcal{L}=\lambda \phi_{1}^{2} \phi_{2}:
$$

$$
\mathcal{L}=\lambda \phi^{4}:
$$

Calculations

- We usually care about $1 \rightarrow n$ or $2 \rightarrow n$ processes
- We need to make sure we have energy conservation
- External (Internal) particles are called on(off)-shell
- On-shell: $E^{2}=p^{2}+m^{2}$
- Off-shell: $E^{2} \neq p^{2}+m^{2}$
- $\mathcal{A}=$ the product of all the vertices and internal lines
- Each internal line with q^{μ} gives suppression

$$
\frac{1}{m^{2}-q^{2}}
$$

- There are many more rules to get all the factors right

Examples of amplitudes

$$
\mathcal{L}=\lambda_{1} X Y Z+\lambda_{2} X^{2} Z
$$

- Energy conservation condition
- Draw the diagram and estimate the amplitude

Examples of amplitudes

$$
\mathcal{L}=\lambda_{1} X Y Z+\lambda_{2} X^{2} Z
$$

- Energy conservation condition $m_{Z}>m_{X}+m_{Y}$
- Draw the diagram and estimate the amplitude

$\mathcal{A} \propto \lambda_{1}$

Examples of amplitudes (2)

$$
\mathcal{L}=\lambda_{1} X Y Z+\lambda_{2} X^{2} Z
$$

- Energy conservation condition
- Draw the diagram and estimate the amplitude

Examples of amplitudes (2)

$$
\mathcal{L}=\lambda_{1} X Y Z+\lambda_{2} X^{2} Z
$$

```
\Gamma ( Y \rightarrow 3 X )
```

- Energy conservation condition $m_{Y}>3 m_{X}$
- Draw the diagram and estimate the amplitude

$$
\begin{aligned}
\mathcal{A} & \propto \lambda_{1} \lambda_{2} \times \frac{1}{\Delta E_{Z}^{2}} \\
& =\lambda_{1} \lambda_{2} \times \frac{1}{m_{Z}^{2}-q^{2}}
\end{aligned}
$$

Examples of amplitudes (HW)

$$
\mathcal{L}=\lambda_{1} X Y Z+\lambda_{2} X^{2} Z
$$

```
\sigma(XX }->XY
```

- Energy conservation condition
- Draw the diagram and estimate the amplitude

Some summary

- Quadratic terms describe free fields. Free particles cannot be created nor decay
- We use perturbation theory were terms with 3 or more fields in \mathcal{L} are consider small
- These terms can generate and destroy particles and give dynamics
- Feynman diagrams are a tool to calculate transition amplitudes
- Many more details are needed to get calculation done
- Once calculations and experiments to check them are done, we can test our theory

Symmetries

How to "built" Lagrangians

- \mathcal{L} is:
- The most general one that is invariant under some symmetries
- We work up to some order (usually 4)
- We need the following input:
- What are the symmtires we impose
- What DOFs we have and how they transform under the symmtry
- The output is
- A Lagrangian with N parameters
- We need to measure its parameters and test it

Symmetries and representations

Example: 3d real space in classical mechanics

- We require that \mathcal{L} is invariant under rotation
- All our DOFs are assigned into vector representations $\left(\vec{r}_{1}, \vec{r}_{2}, \ldots\right)$
- We construct invariants from these DOFs. They are called singlets or scalars

$$
C_{i j} \equiv \vec{r}_{i} \cdot \vec{r}_{j}
$$

- We then require that V is a function of the $C_{i j} \mathrm{~s}$

Generalizations

- In mechanics, \vec{r} lives in 3d real space and is a vector
- Fields do not live in real space. They live in some mathematical space
- They also do not have to be vectors, but can be scalars or tensors (representation)
- The idea is similar to what we did in mechanics
- We require \mathcal{L} to be invariant under rotation in that mathematical space
- Thus \mathcal{L} depends only on combinations of fields that form singlets
- All this is related to a subject called Lie groups
- We usually care about $S O(N), S U(N)$ and $U(1)$

Combining representations

- It is all about generating singlets
- We all know that we can combine vectors in real space to generate singlets
- We also know how to make a spin zero from 2 spin half spinors (spin zero is a singlet!)
- There is a generalization of this procedure to any mathematical space
- As of now, all we need to know are $S U(3), S U(2)$ and $U(1)$

$U(1)$

- $U(1)$ is rotation in 1d complex space
- Each field comes with a q that tells us how much it rotates
- When we rotate by an angle θ we have

$$
X \rightarrow e^{i q \theta} X
$$

- Consider $q_{X}=1, q_{Y}=2, q_{Z}=3$ and write 3rd and 4th order invariants
$X X^{*} Y Y^{*} \quad X^{2} Y^{*}$

$U(1)$

- $U(1)$ is rotation in 1d complex space
- Each field comes with a q that tells us how much it rotates
- When we rotate by an angle θ we have

$$
X \rightarrow e^{i q \theta} X
$$

- Consider $q_{X}=1, q_{Y}=2, q_{Z}=3$ and write 3rd and 4th order invariants
$X X^{*} Y Y^{*}$
$X^{2} Y^{*}$
$X Y Z^{*}$
$X^{3} Z^{*}$
$Y^{2} X^{*} Z^{*}$

$S U(2)$

- $U(2)$ is rotation in 2d complex space. We have $U(2)=S U(2) \times U(1)$
- $S U(2)$ is localy the same as rotation in 3d real space
- Rotations in this space are non-Abelian (non-commutative)
- It depends on the representation: scalar, spinor, vector
- Spin in QM is described by $\operatorname{SU}(2)$ rotations, so we use the same language to describe it
- A representation is labeled by the number of DOFs it has, like singlet, doublet or triplet
- For the SM all we care is that $2 \times 2 \ni 1$ so we know how to generate singlets

$S U(3)$

- $U(3)$ is rotation in 3d complex space. We have $U(3)=S U(3) \times U(1)$
- The representations we care about are singlets, triplets and octets
- Unlike $S U(2)$, in $S U(3)$ we have complex representations, 3 and $\overline{3}$
- The three quarks form a triplet (the three colors)
- To form a singlet we need to know that

$$
3 \times \overline{3} \ni 1 \quad 3 \times 3 \times 3 \ni 1
$$

- This is why we have baryons and mesons

A game

A game calls "building invariants"

- Symmetry is $S U(3) \times S U(2) \times U(1)$
- $U(1)$: Add the numbers (\bar{X} had charge $-q$)
- $S U(2): 2 \times 2 \ni 1$ and recall that 1 is a singlet
- $S U(3)$: we need $3 \times \overline{3} \ni 1$ and $3 \times 3 \times 3 \ni 1$
- Fields are

$$
Q(3,2)_{1} \quad U(3,1)_{4} \quad D(3,1)_{-2} \quad H(1,2)_{3}
$$

- What 3rd and 4th order invariants can we built?

$$
\left(H H^{*}\right)^{2} \quad H^{3} \quad U D D \quad Q U D \quad H Q U^{*}
$$

- HW: Find more invariants

Local symmetires

Local symmetry

Basic idea: rotations depend on x and t

$$
\phi\left(x_{\mu}\right) \rightarrow e^{i q \theta} \phi\left(x_{\mu}\right) \quad \xrightarrow{\text { local }} \quad \phi\left(x_{\mu}\right) \rightarrow e^{i q \theta\left(x_{\mu}\right)} \phi\left(x_{\mu}\right)
$$

- It is kind of logical and we think that all imposed symmetries in Nature are local
- The kinetic term $\left|\partial_{\mu} \phi\right|^{2}$ in not invariant
- We want a kinetic term (why?)
- We can save the kinetic term if we add a field that is
- Massless
- Spin 1
- Adjoint representation: $q=0$ for $U(1)$, triplet for $S U(2)$, and octet for $S U(3)$

Gauge symmetry

- Fermions are called matter fields. What they are and their representation is an input
- Gauge fields are known as force fields

Local symmetries \Rightarrow force fields

Gauge symmetry

- The coupling of the new field is via the kinetic term. Recall classical electromagnetism

$$
H=\frac{p^{2}}{2 m} \Rightarrow H=\frac{\left(p-q A_{i}\right)^{2}}{2 m}
$$

- In QFT, for a local $U(1)$ symmetry and a field with charge q

$$
\partial_{\mu} \rightarrow D_{\mu} \quad D_{\mu}=\partial_{\mu}+i q A_{\mu}
$$

- We get interaction from the kinetic term

$$
\left|D_{\mu} \phi\right|^{2}=\left|\partial_{\mu} \phi+i q A_{\mu} \phi\right|^{2} \ni q A \phi^{2}+q^{2} A^{2} \phi^{2}
$$

- The interaction is proportional to q

Accidental symmetries

- We only impose local symmetries
- Yet, because we truncate the expansion, we can get symmetries as output
- They are global, and are called accidental
- Example: $U(1)$ with $X(q=1)$ and $Y(q=-4)$

$$
V\left(X X^{*}, Y Y^{*}\right) \Rightarrow U(1)_{X} \times U(1)_{Y}
$$

- $X^{4} Y$ breaks this symmetry
- In the SM baryon and lepton numbers are accidental symmetries

SSB

Breaking a symmetry

Y. Grossman

HEP theory (4)

SSB

- By choosing a ground state we break the symmetry
- We choose to expend around a point that does not respect the symmetry
- PT only works when we expand around a minimum

What is the different between a broken symmetry and no symmetry?

SSB

Symmetry is $x \rightarrow-x$ and we keep up to x^{4}

$$
f(x)=a^{2} x^{4}-2 b^{2} x^{2} \quad x_{\min }= \pm b / a
$$

We choose to expand around $+b / a$ and use $u \rightarrow x-b / a$

$$
f(x)=4 b^{2} u^{2}+4 b a u^{3}+a^{2} u^{4}
$$

- No $u \rightarrow-u$ symmetry
- The $x \rightarrow-x$ symmetry is hidden
- A general function has 3 parameters $c_{2} u^{2}+c_{3} u^{3}+c_{4} u^{4}$
- SSB implies a relation between them

$$
c_{3}^{2}=4 c_{2} c_{4}
$$

SSB in QFT

- When we expand the field around a minimum that is not invariant under a symmetry

$$
\phi \rightarrow v+H
$$

- It breaks the symmetries that ϕ is not a singlet under
- Masses to other fields via Yukawa interactions

$$
\phi X^{2} \rightarrow(v+H) X^{2}=v X^{2}+\ldots
$$

- Gauge fields of the broken symmetries also get mass

$$
\left|D_{\mu} \phi\right|^{2}=\left|\partial_{\mu} \phi+i q A_{\mu} \phi\right|^{2} \ni A^{2} \phi^{2} \rightarrow v^{2} A^{2}
$$

