Practical Statistics for Physicists

Louis Lyons

Imperial College and Oxford

CMS expt at LHC
I.lyons@physics.ox.ac.uk

CERN Summer Students
July 2015

Book

Statistics for Nuclear and Particle Physicists
 Cambridge University Press, 1986

Available from CUP

Errata in these lectures

Topics

1) Introduction
2) χ^{2} and $\mathcal{L i k e l i h o o d s ~}$
3) Bayes and Frequentism
4) Higgs: Example of Search for New Physics

Introductory remarks

What is Statistics?
Probability and Statistics
Why uncertainties?
Random and systematic uncertainties
Combining uncertainties
Combining experiments
Binomial, Poisson and Gaussian distributions

What do we do with Statistics?

Parameter Determination (best value and range)
e.g. Mass of Higgs $=80 \pm 2$

Goodness of Fit
Does data agree with our theory?
Hypothesis Testing
Does data prefer Theory 1 to Theory 2?
(Decision Making
What experiment shall I do next?)

Why bother?

HEP is expensive and time-consuming SO
Worth investing effort in statistical analysis
\rightarrow better information from data

Probability and Statistics

Example: Dice

Given $P(5)=1 / 6$, what is $P(20$ 5's in 100 trials)?

If unbiassed, what is
$P(n$ evens in 100 trials)?

Given 20 5's in 100 trials, what is $\mathrm{P}(5)$?
And its uncertainty?

Given 60 evens in 100 trials, is it unbiassed?

Or is P (evens) $=2 / 3$?

THEORY \rightarrow DATA

Probability

and

Statistics

Example: Dice

Given $P(5)=1 / 6$, what is $P(20$ 5's in 100 trials)?

Given 20 5's in 100 trials, what is $P(5)$?
And its uncertainty?
Parameter Determination
Given 60 evens in 100 trials, is it unbiassed?
Goodness of Fit
Or is P (evens) $=2 / 3$? Hypothesis Testing
N.B. Parameter values not sensible if goodness of fit is poor/bad

Why do we need uncertainties?

Affects conclusion about our result

$$
\text { e.g. Result / Theory = } 0.970
$$

If 0.970 ± 0.050, data compatible with theory If 0.970 ± 0.005, data incompatible with theory If $0.970 \pm 0.7, \quad$ need better experiment

Historical experiment at Harwell testing General Relativity

Random + Systematic Uncertainties

Random/Statistical: Limited accuracy, Poisson counts
Spread of answers on repetition (Method of estimating)
Systematics: May cause shift, but not spread
e.g. Pendulum $\quad g=4 \pi^{2} L / \tau^{2}, \quad \tau=T / n$

Statistical uncertainties: T, L
Systematics: T, L
Calibrate: Systematic \rightarrow Statistical
More systematics:
Formula for undamped, small amplitude, rigid, simple pendulum
Might want to correct to g at sea level:
Different correction formulae

Ratio of g at different locations: Possible systematics might cancel.
Correlations relevant

Presenting result

Quote result as $g \pm \sigma_{\text {stat }} \pm \sigma_{\text {syst }}$
Or combine uncertainties in quadrature $\rightarrow \mathrm{g} \pm \sigma$

Other extreme: Show all systematic contributions separately Useful for assessing correlations with other measurements Needed for using:
improved outside information,
combining results
using measurements to calculate something else.

Combining uncertainties

$$
\begin{gathered}
z=x-y \\
\delta z=\delta x-\delta y \\
\text { Why } \quad[1]
\end{gathered}
$$

Combining errors

$$
\begin{gather*}
z=x-y \\
\delta z=\delta x-\delta y \tag{1}\\
\text { Why } \quad \sigma_{z}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2} ?
\end{gather*}
$$

1) [1] is for specific $\delta x, \delta y$

Could be $\longrightarrow \longrightarrow$ so on average

N.B. Mneumonic, not proof
2) $\sigma_{z}^{2}=\overline{\delta z^{2}}=\overline{\delta x^{2}}+\overline{\delta y^{2}}-2 \overline{\delta x \bar{\delta} y}$

$$
=\sigma_{x}^{2}+\sigma_{y}^{2}
$$

3) Averaging is good for you: $\quad N$ measurements $x_{i} \pm \sigma$
[1] $x_{i} \pm \sigma \quad$ or [2] $x_{i} \pm \sigma / \sqrt{ } N$?
4) Tossing a coin:

Score 0 for tails, 2 for heads (1 ± 1)
After 100 tosses, [1] 100 ± 100 or [2] 100 ± 10 ?

Prob(0 or 200) $=(1 / 2)^{99} \sim 10^{-30}$
Compare age of Universe $\sim 10^{18}$ seconds

Rules for different functions

1) Linear: $z=k_{1} x_{1}+k_{2} x_{2}+\ldots \ldots$.

$$
\sigma_{z}=k_{1} \sigma_{1} \& k_{2} \sigma_{2}
$$

\& means "combine in quadrature"
N.B. Fractional errors NOT relevant

$$
\text { e.g. } \begin{aligned}
z & =x-y \\
z & =\text { your height } \\
x & =\text { position of head wrt moon } \\
y & =\text { position of feet wrt moon }
\end{aligned}
$$

x and y measured to 0.1%
z could be -30 miles

Rules for different functions

2) Products and quotients

$$
\begin{aligned}
& \mathrm{z}=\mathrm{x}^{\alpha} \mathrm{y}^{\beta} \ldots \ldots \\
& \sigma_{\mathrm{z}} / \mathrm{z}=\alpha \sigma_{\mathrm{x}} / \mathrm{x} \& \beta \sigma_{\mathrm{y}} / \mathrm{y}
\end{aligned}
$$

Useful for $x^{2}, x y, x / \sqrt{ } y, \ldots \ldots$
3) Anything else:

$$
\begin{aligned}
& z=z\left(x_{1}, x_{2}, \ldots . .\right) \\
\sigma_{z} & =\partial z / \partial x_{1} \sigma_{1} \& \partial z / \partial x_{2} \sigma_{2} \& \ldots \ldots
\end{aligned}
$$

OR numerically:

$$
\begin{aligned}
& z_{0}=z\left(x_{1}, \quad x_{2}, \quad x_{3} \ldots\right) \\
& z_{1}=z\left(x_{1}+\sigma_{1}, x_{2}, \quad x_{3} \ldots\right) \\
& z_{2}=z\left(x_{1}, \quad x_{2}+\sigma_{2}, \quad x_{3} \ldots\right) \\
& \sigma_{z}=\left(z_{1}-z_{0}\right) \&\left(z_{2}-z_{0}\right) \& \ldots
\end{aligned}
$$

N.B. All formulae approximate (except 1)) - assumes small uncertainties

Combining results

$$
\begin{aligned}
& x_{i} \pm \sigma_{i} \quad \text { (uncorrelated) }
\end{aligned}
$$

Define $\omega_{i}=1 / \sigma_{i}^{2}=$ weight \sim information content

$$
\begin{aligned}
& \hat{x}=\sum w_{i} x_{i} / \sum \omega_{i} \\
& W=\sum \omega_{i}
\end{aligned}
$$

Example: Equal $\sigma_{i} \Rightarrow \hat{x}=\bar{x}$

$$
\sigma=\sigma_{i} / \sqrt{n}
$$

BEWARE

$$
\left.\begin{array}{r}
100 \pm 10 \\
1 \pm 1
\end{array}\right] \begin{aligned}
& 2 \pm 1 ? \\
& \text { or } 50.5 \pm 5 ?
\end{aligned}
$$

N.B. Better to combine data!

Difference between averaging and adding

Isolated island with conservative inhabitants How many married people ?

Number of married men $=100 \pm 5 \mathrm{~K}$
Number of married women $=80 \pm 30 \mathrm{~K}$

GENERAL POINT: Adding (uncontroversial) theoretical input can improve precision of answer
Compare "kinematic fitting"

Binomial Distribution

Fixed N independent trials, each with same prob of success p
What is prob of s successes?
e.g. Throw dice 100 times. Success = '6’. What is prob of $0,1, \ldots 49,50,51, \ldots 99,100$ successes?

Effic of track reconstrn $=98 \%$. For 500 tracks, prob that 490, 491,..... 499, 500 reconstructed. Ang dist is $1+0.7 \cos \theta$? Prob of $52 / 70$ events with $\cos \theta>0$?
(More interesting is statistics question)

$$
P_{s}=\frac{N!}{(N-s)!s!} p^{s}(1-p)^{N-s} \text {, as is obvious }
$$

Expected number of successes $=\Sigma s P_{s}=N p$,

as is obvious

Variance of no. of successes $=N p(1-p)$
Variance $\sim N p$, for $p \sim 0$

$$
\sim N(1-p) \text { for } p \sim 1
$$

NOT $N p$ in general. NOT $s \pm \sqrt{ }$
e.g. 100 trials, 99 successes, NOT 99 ± 10

Statistics: Estimate p and σ_{p} from $s(a n d N)$

$$
\begin{aligned}
& p=s / N \\
& \sigma_{p}^{2}=1 / \mathrm{N} s / \mathrm{N}(1-s / \mathrm{N}) \\
& \quad \text { If } \mathrm{s}=0, \mathrm{p}=0 \pm 0 ? \\
& \quad \text { If } \mathrm{s}=1, \mathrm{p}=1.0 \pm 0 ?
\end{aligned}
$$

Limiting cases:

- $\mathrm{p}=$ const, $\mathrm{N} \rightarrow \infty$:

Binomial \rightarrow Gaussian

$$
\mu=N p, \sigma^{2}=N p(1-p)
$$

- $N \rightarrow \infty, p \rightarrow 0, N p=$ const: Binomial \rightarrow Poisson

$$
\mu=N p, \sigma^{2}=N p
$$

$\{$ N.B. Gaussian continuous and extends to $-\infty\}$

Binomial Distributions

Fig. A3.1 The probabilities $P(r)$, according to the binomial distribution, for r successes out of 12 independent trials, when the probability p of success in an individual trial is as specified in the diagram. As the expected number of successes is $12 p$, the peak of the distribution moves to the right as p increases. The RMS width of the distribution is $\sqrt{12 p(1-p)}$ and hence is largest for $p=\frac{1}{2}$. Since the chance of success in the $p=\frac{1}{6}$ case is equal to that of failure for $p=\frac{5}{6}$, the diagrams (a) and (d) are mirror images of each other. Similarly the $p=\frac{1}{2}$ situation shown in (c) is symmetric about $r=6$ successes.

Poisson Distribution

Prob of n independent events occurring in time t when rate is r (constant)
e.g. events in bin of histogram

NOT Radioactive decay for $t \sim \tau$
Limit of Binomial $(\mathrm{N} \rightarrow \infty, \mathrm{p} \rightarrow 0, \mathrm{~Np} \rightarrow \mu)$
$P_{n}=e^{-r t}(r t)^{n} / n!=e^{-\mu} \mu^{n} / n!\quad(\mu=r t)$
$\langle\mathrm{n}\rangle=\mathrm{rt}=\mu \quad$ (No surprise!)
$\sigma_{\mathrm{n}}^{2}=\mu \quad$ " $\mathrm{n} \pm \sqrt{ } \mathrm{n} " \quad$ BEWARE 0 ± 0 ?
$\mu \rightarrow \infty$: Poisson \rightarrow Gaussian, with mean $=\mu$, variance $=\mu$
Important for χ^{2}

For your thought

Poisson $P_{n}=e^{-\mu} \mu^{n} / n$!
$P_{0}=e^{-\mu} \quad P_{1}=\mu e^{-\mu} \quad P_{2}=\mu^{2} / 2 e^{-\mu}$
For small $\mu, P_{1} \sim \mu, \quad P_{2} \sim \mu^{2} / 2$ If probability of 1 rare event $\sim \mu$, why isn't probability of 2 events $\sim \mu^{2}$?

Poisson Distributions

Approximately Gaussian

Fig. A4.1 Roisson distributions for different values of the parameter λ. (a) $\lambda=1.2$; (b) $\lambda=5.0$; (c) $\lambda=20.0$. P_{r} is the probability of observing r events. (Note the different scales on the three figures.) For each value of λ, the mean of the distribution is at λ, and the RMS width is $\sqrt{\lambda}$. As λ increases above about 5 , the distributions

$$
y=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

Gaussian or Normal

Relevance of Central Limit Theorem

$$
y=\sum x_{i}
$$

x has (almost) any dist $y \rightarrow$ Gaussian for large n

Fig. 1.5. The solid curve is the Gaussian distribution of eqn (1.14). The distribution peaks at the mean μ, and its width is characterised by the parameter σ. The dashed curve is another Gaussian distribution with the same values of μ, but with σ twice as large as the solid curve. Because the normalisation condition (1.15) ensures that the area under the curves is the same, the height of the dashed curve is only half that of the solid curve at their maxima. The scale on the x-axis refers to the solid curve.

Significance of σ

i) RMS of Gaussian = σ (hence factor of 2 in definition of Gaussian)
ii) At $x=\mu \pm \sigma, y=y_{\text {max }} / \sqrt{ } \mathrm{\sim} \sim 0.606 y_{\text {max }}$
(i.e. $\sigma=$ half-width at 'half'-height)
iii) Fractional area within $\mu \pm \sigma=68 \%$
iv) Height at $\max =1 /(\sigma \sqrt{2 \pi})$

$$
\begin{aligned}
& \text { of faison } \\
& \underset{\sim}{=}\} \text { gausion }
\end{aligned}
$$

Relevant for Goodness of Fit

Tomorrow

Chi-squared for parameter determination and for goodness of fit
Likelihood for parameter determination

