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The Standard Model

The Standard Model Lagrangian is determined by symmetries

I space-time symmetry: global Poincaré-symmetry

I internal symmetries: local SU(n) gauge symmetries

LSM = −1
4
F a
µνF

aµν + i ψ̄D/ψ gauge sector

+|DH |2 − V (H) EWSB sector

+ψiλijψjH + h.c. flavour sector

+NiMijNj ν-mass sector

. . . requiring renormalizability and ignoring the strong CP-problem.
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Outline

I QED and QCD as gauge theories

I QCD for the LHC

I Breaking gauge symmetries:

the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism
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The Dirac equation

(iγµ∂µ −m)ψ(x) = 0

“A great deal more was hidden in the Dirac equation than the author had expected

when he wrote it down in 1928. Dirac himself remarked in one of his talks that his

equation was more intelligent than its author.” (Weisskopf on Dirac)

[We use natural units: c = ~ = 1, so that [mass] = [length]−1 = [time]−1 = (Giga) electron volt]

What would you do to reconcile quantum theory and special relativity:

i
∂

∂t
φ = Hφ and E 2 = ~p2 + m2 ?

Iterate the Schrödinger equation to arrive at(
i
∂

∂t

)2

φ = H2φ = (−~∇2 + m2)φ

or (� + m2)φ = 0

where � = ∂2/∂t2 − ~∇2.
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Dirac was not satisfied with the Klein-Gordon equation (� + m2)φ = 0 since it
contains

I solutions with negative energy E < 0;

I a second order derivative in time, and can thus lead to negative
probability densities |φ|2 < 0.

Bohr:“ What are you working on Mr. Dirac?”
Dirac:“ I am trying to take the square root of something.”

Dirac wanted an equation that is Lorentz covariant and first order in the time
derivative:

i
∂ψ

∂t
= HDiracψ = (α1p1 + α2p2 + α3p3 + βm)ψ = (−i~α · ~∇+ βm)ψ

Iterating the equation on both sides yields

E 2ψ =

(
i
∂

∂t

)2

ψ = (−i~α · ~∇+ βm)(−i~α · ~∇+ βm)ψ

=
(
−αiαj∇i∇j − i(βαi + αiβ)m∇i + β2m2

)
ψ

= (p2 + m2)ψ = (−∇i∇i + m2)ψ .
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The αi and β must satisfy

αiαj + αjαi = 2δij

βαi + αiβ = 0

β2 = 1

so they cannot be numbers.

Dirac proposed that the αi and β are 4× 4 matrices, and that ψ is a
4-component column vector, known as Dirac spinor.

One choice of matrices is

~α =

(
0 ~σ
~σ 0

)
and β =

(
1 0
0 −1

)
where ~σ are the Pauli matrices.

The Dirac spinor describes particles and antiparticles with spin 1/2:

ψ =


ψ↑

ψ↓

ψ↑

ψ↓
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There is a more compact way to write the Dirac equation.

Define the γ-matrices
γ0 ≡ β and ~γ ≡ β~α

so that
{γµ, γν} = γµγν + γνγµ = 2gµν .

With the previous choice of αi and β one has

γ0 =

(
1 0
0 −1

)
and ~γ =

(
0 ~σ
−~σ 0

)
where ~σ are the Pauli matrices.

Using the γ-matrices, the Dirac equation becomes:

(iγµ∂µ −m)ψ(x) = 0 or (i∂/−m)ψ(x) = 0

where we have introduced ∂µ ≡ ∂/∂xµ = (∂/∂t,−~∇) and ∂/ ≡ γµ∂µ.
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The beauty and magic of the Dirac equation

The Dirac equation

(iγµ∂µ −m)ψ(x) = 0

I is form-invariant (covariant) under Lorentz transformations;

I describes particles with spin 1/2;

I predicts the correct magnetic moment g = 2;

I predicts the existence of anti-particles!
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The Dirac Lagrangian

One can construct Lorentz scalars and vectors from Dirac spinors and the
γ-matrices, e.g.

ψψ
LT−→ ψψ

ψγµψ
LT−→ Λµνψγ

νψ

where we have defined ψ ≡ ψ†γ0.

Using ψ,ψ and γµ one can thus construct a Lorentz covariant Lagrangian

L = ψ (iγµ∂µ −m)ψ ,

which leads to the Dirac equation through the usual Euler-Lagrange equations,

∂

∂xµ

(
∂L

∂(∂ψ/∂xµ)

)
− ∂L
∂ψ

= 0 and
∂

∂xµ

(
∂L

∂(∂ψ/∂xµ)

)
− ∂L
∂ψ

= 0 .
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Gauge transformations: QED

Consider the Lagrangian for a free Dirac field ψ:

L = ψ (iγµ∂µ −m)ψ .

The Lagrangian is invariant under a phase transformation of the fermion field:

ψ → e−iωψ, ψ → e iωψ,

where ω is a constant (i.e. independent of x).

The set of numbers e−iω form a group. This particular group is “abelian”
which is to say that any two elements of the group commute:

e−iω1e−iω2 = e−iω2e−iω1 .

This particular group is called U(1), i.e. the group of all unitary 1× 1 matrices.
(A unitary matrix satisfies U† = U−1.)

Thus the Dirac Lagrangian is invariant under global U(1) transformations.
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We now require invariance under local U(1) transformations, i.e.

ψ → e−iω(x)ψ, ψ → e iω(x)ψ,

where ω(x) now depends on the space-time point.

Note that L = ψ (iγµ∂µ −m)ψ is not invariant under local U(1)
transformations:

L → L+ δL = L + ψγµ[∂µω(x)]ψ ,

where we consider infinitesimal transformations

ψ → ψ + δψ = ψ − iω(x)ψ and ψ → ψ + δψ = ψ + iω(x)ψ .

We can restore invariance under local U(1) transformations if we introduce a
vector field Aµ(x) with the interaction

−eψγµAµψ ,

so that the Lagrangian density becomes

L = ψ (iγµ(∂µ + ieAµ)−m)ψ .
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The new Lagrangian

L = ψ (iγµ(∂µ + ieAµ)−m)ψ

is invariant under local U(1) transformations if we require that

Aµ → Aµ + δAµ = Aµ +
1

e
[∂µω(x)] .

We need to add a Lorentz- and gauge invariant kinetic term for the field Aµ:

L = −1

4
FµνF

µν + ψ (iγµ(∂µ + ieAµ)−m)ψ ,

where
Fµν = ∂µAν − ∂νAµ .

[We have fixed the coefficient of the term ∝ FµνF
µν so that we recover the standard form of

Maxwell’s equations.]

A mass term for the new field ∝ m2
AAµA

µ is not invariant under gauge
transformations,

δL =
2m2

A

e
Aµ∂µω(x) 6= 0 ,

and thus not allowed.
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It is useful to introduce the concept of a “covariant derivative” Dµ as

Dµ = ∂µ + ieAµ .

With

ψ → ψ + δψ = ψ − iω(x)ψ and Aµ → Aµ + δAµ = Aµ +
1

e
[∂µω(x)]

one finds
Dµψ → Dµψ + δ(Dµψ) = Dµψ − iω(x)Dµψ

so that

L = −1

4
FµνF

µν + ψ (iγµDµ −m)ψ

is gauge invariant.

One can express Fµν in terms of the covariant derivative:

Fµν = − i

e
[Dµ,Dν ] = . . . = ∂µAν − ∂νAµ .
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Gauge transformations: Summary

I The Dirac Lagrangian is invariant under local U(1) transformations
if we add a vector field Aµ and an interaction −eψγµAµψ.

I The interaction is obtained by replacing the derivate ∂µ with the
covariant derivative Dµ = ∂µ + ieAµ.

I The gauge-invariant kinetic term for the vector field is ∝ FµνF
µν ,

where Fµν ∝ [Dµ,Dν ].

I The new vector (gauge) field is massless, since a term ∝ AµA
µ is

not gauge-invariant.

I The Lagrangian resulting from local U(1) gauge-invariance is
identical to that of QED.
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Gauge transformations: non-abelian gauge groups

We now apply the idea of local gauge invariance to the case where the
transformation is “non-abelian”, i.e. different elements of the group do not
commute with each other.

We focus on the group SU(n), i.e. the group of special unitary transformations.

To specify an SU(n) matrix, we need n2 − 1 real parameters, so we can write

e−iωaT a

where the ωa, a ∈ {1, ..., n2 − 1} are real parameters, and the T a are called
generators of the group. [If you are unfamiliar with the concept of a group generator, you

can think of the T a as traceless, hermitian n × n matrices.]

The crucial new feature is that the elements of SU(n) do not commute,

e−iωa
1T

a

e−iωa
2T

a

6= e−iωa
2T

a

e−iωa
1T

a

,

because the generators do not commute:

[T a,T b] = if abcT c 6= 0 .
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Recall that the SU(n) transformations act on the fermion fields, so ψ carries an
index i , with i ∈ {1, ..., n}:

ψ →
(
e−iωaT a

)
ψ or ψi →

(
e−iωaT a

)j
i
ψj

Considering infinitesimal transformations

δψi = −iωa(T a)jiψj and δψ
i

= iωaψ
j
(T a)ij

one finds that the Lagragian is not invariant under local SU(n) transformations:

δL = ψ
i
(T a)jiγ

µ(∂µω
a(x))ψj .

We can restore local SU(n) gauge-invariance by introducing n2 − 1 new vector
particles Aa

µ, one for each generator of the group.

They should transform as

δAa
µ(x) = −f abcAb

µ(x)ωc(x) +
1

g
[∂µω

a(x)] .
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The interaction of the new vector particles and the fermions is obtained by
replacing the ordinary derivative with the covariant derivative

Dµ = (∂µ + igT aAa
µ) .

Note that in this case Dµ is a n × n matrix.

The SU(n) invariant Lagrangian then becomes

L = −1

4
F a
µνF

aµν + ψ
i
(iγµDµ −m)ji ψj

The field strength tensor is constructed from

Fµν = − i

g
[Dµ,Dν ]

with Fµν = T aF a
µν .

This gives F a
µν = ∂µA

a
ν − ∂νAa

µ − gf abcAb
µA

c
ν .
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Non-abelian gauge transformations: Summary

I A non-abelian gauge theory is a theory in which the Lagrangian is
invariant under local transformations of a non-abelian group.

I This invariance is achieved by introducing a gauge boson, Aa
µ, for

each generator of the group. The interaction between the gauge
bosons and the fermions is obtained by replacing the partial
derivative ∂µ with the covariant derivative Dµ = (∂µ + igT aAa

µ).

I The kinetic term for the vector field is ∝ F a
µνF

aµν , where F a
µν is

constructed from the commutator of the covariant derivative.

I F a
µνF

aµν contains terms which are cubic and quartic in the gauge
boson fields, indicating that the gauge bosons interact with each
other.

I The gauge bosons are massless, since a term ∝ Aa
µA

aµ is not
invariant under local gauge transformations.
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