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The Standard Model

The Standard Model Lagrangian is determined by symmetries

I space-time symmetry: global Poincaré-symmetry

I internal symmetries: local SU(n) gauge symmetries

LSM = −1
4
F a
µνF

aµν + i ψ̄D/ψ gauge sector

+|DH |2 − V (H) EWSB sector

+ψiλijψjH + h.c. flavour sector

+NiMijNj ν-mass sector
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Outline

I QED and QCD as gauge theories

I QCD for the LHC

I Breaking gauge symmetries:

the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism
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QCD as an SU(3) gauge theory

We start with the Dirac Lagrangian for a free quark q,

L = q̄ (iγµ∂µ −m) q ,

and require invariance under local SU(3) transformations.

Recall that SU(3) is the group of special unitary transformations, i.e. the group
of all 3× 3 unitary matrices with determinant one. To specify an SU(3)
transformation, one needs 32 − 1 = 8 real parameters, so we can write

e−iωaT a

where the ωa, a ∈ {1, ..., 8} are real parameters, and the T a are called
generators of the group. [If you are unfamiliar with the concept of a group generator, you

can think of the T a as traceless, hermitian 3 × 3 matrices.]

SU(3) is a non-abelian group, i.e. its generators and thus its elements do not
commute,

[T a,T b] = if abcT c 6= 0 and e−iωa
1T

a

e−iωb
2T

b

6= e−iωb
2T

b

e−iωa
1T

a

.
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The SU(3) transformations act on the quark fields, so q carries an index i , with
i ∈ {1, ..., 3}:

q →
(
e−iωaT a

)
q or qi →

(
e−iωaT a

)j
i
qj

The quantum number associated with the label i is called colour.

For local SU(3) invariance one needs to introduce 32 − 1 = 8 new vector
particles Aa

µ, one for each generator of the group. Those are the gluons.

The interaction of the gluons and the quarks is determined by gauge invariance
and obtained by replacing the ordinary derivative with the covariant derivative,

Dµ = (∂µ + igT aAa
µ) .

The SU(3) invariant Lagrangian then becomes

L = −1

4
F a
µνF

aµν + q̄i (iγµDµ −m)ji qj

with F a
µν = ∂µA

a
ν − ∂νAa

µ − gf abcAb
µA

c
ν .

Because of the gauge symmetry, the gluon is massless.
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The interactions of QCD follow from gauge invariance:

Linteraction = g Aa
µ q̄γ

µT aq − g f abc(∂µA
a
ν)Ab µAc ν − g 2f abc f adeAb

µA
c
νA

d µAe ν :
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The QCD coupling

Consider a dimensionless physical observable R, e.g. the ratio of two cross
sections, evaluated at some large energy scale Q. If Q � m, one can set
m→ 0, and dimensional analysis implies that R should be independent of Q.

This is not true in quantum field theory. Quantum fluctuations change the
value of the effective coupling:

The calculation of R as a perturbation series in the coupling αs ≡ g/4π
requires renormalization to remove ultraviolet contributions. This introduces a
second mass scale µ – the point at which the UV contributions are subtracted.
Thus

R = R(Q2/µ2, αs(µ
2)) .
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However, a physical observable must not depend on the scale µ, i.e.

µ2 d

dµ2
R(Q2/µ2, αs(µ

2)) =

[
µ2 ∂

∂µ2
+ µ2 ∂αs

∂µ2

∂

∂αs

]
R = 0 .

Introducing
t = ln

(
Q2

µ2

)
, β(αs) = µ2 ∂αs

∂µ2

we have [
− ∂

∂t
+ β(αs)

∂

∂αs

]
R = 0 .

This renormalization group equation is solved by defining a running coupling
αs(Q

2):
∂αs(Q

2)

∂t
= β(αs(Q

2)) .

The β-function has a perturbative expansion and can be extracted from an
explicit calculation of higher-order loop-corrections to propagators and vertices.
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The running of the coupling at one-loop is thus determined from

∂αs(Q
2)

∂t
= β(αs(Q

2)) and β(αs) = −bα2
s

which yields

αs(Q
2) =

αs(µ
2)

1 + αs(µ2) b ln(Q2/µ2)
with b =

33− 2nf
12π

.

For nf ≤ 16 the QCD coupling decreases with increasing Q2. This is the
famous property of asymptotic freedom.

Note that in QED one finds b = −1/3 so that the QED coupling

αQED(Q2) =
αQED(µ2)

1− αQED(µ2)

3π
ln(Q2/µ2)

increases with increasing Q2.

10 / 18



The running of the coupling at one-loop is thus determined from

∂αs(Q
2)

∂t
= β(αs(Q

2)) and β(αs) = −bα2
s

which yields

αs(Q
2) =

αs(µ
2)

1 + αs(µ2) b ln(Q2/µ2)
with b =

33− 2nf
12π

.

For nf ≤ 16 the QCD coupling decreases with increasing Q2. This is the
famous property of asymptotic freedom.

Note that in QED one finds b = −1/3 so that the QED coupling

αQED(Q2) =
αQED(µ2)

1− αQED(µ2)

3π
ln(Q2/µ2)

increases with increasing Q2.

10 / 18



The running QCD coupling

non-perturbative←→ perturbative
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Deeply inelastic scattering

Consider the scattering of a high-energy charged lepton off a proton target.

In the parton model we imagine the proton,
or any other hadron, to be made of point-
like constituents, the partons. The photon
scatters from a point-like quark with fraction
ξ of the proton’s momentum.

The parton model leads to an intuitive formula that relates the lepton-hadron
cross section to the cross section for the electron-parton scattering:

dσ(lh)

dxdQ2
=
∑
a

∫ 1

0

dξ fa/h(ξ)
dσ(la)

dxdQ2
,

where dσ(lh) is the inclusive cross section for lepton-nucleon scattering, while
dσ(la) is the parton-electron cross section, with the parton’s momentum given
by ξp, ξ between zero and one, and fa/h(ξ) is a parton distribution function.
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In QCD, beyond the lowest order approximation, we have to include diagrams
like

The integral over the transverse momentum of the emitted gluon is
logarithmically divergent at small |kT |.

The limit kT → 0 corresponds to a long-range part of QCD which is not
calculable in perturbation theory. However, there is a factorisation theorem
which states that the long-range contributions can be absorbed in the parton
distribution functions.

Separating short- and long-distance physics requires the introduction of a
factorisation scale µF .
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The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation

The parton distribution function can be defined in terms of quark and gluon
field operators. They are universal, i.e. independent of the particular hard
scattering process. Pdfs could, in principle, be calculated using lattice QCD,
but currently they are determined from experiment.

The dependence of the parton distribution function on the renormalisation
scale µF is determined by the DGLAP equation:

d

d lnµF
fa/h(x , µF ) =

∑
b

∫ 1

x

dξ

ξ
Pab(x/ξ, αs(µF )) fb/h(ξ, µF ).

The splitting function Pab has a perturbative expansion

Pab(x/ξ, αs(µF )) = P
(1)
ab (x/ξ)

αs(µF )

π
+ P

(2)
ab (x/ξ)

(
αs(µF )

π

)2

+ · · · .

and can be calculated order by order in perturbation theory.

The DGLAP-equation is one of the most important equations in perturbative

QCD.
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Hadron-hadron collisions

In hadron-hadron scattering, constituent partons from each incoming hadron
interact at short distance (large momentum transfer Q2).

The cross section for a hard scattering process initiated by two hadrons with
momenta pA and pB takes a factored form similar to that found for deeply
inelastic scattering

dσ(pA, pB) =
∑
a,b

∫
dξAdξB fa/A(ξA, µF ) fb/B(ξB , µF )

×d σ̂ab(ξApA, ξBpB , µF ).
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Hadron-hadron collisions

Historically, the most convincing evidence that the quark-parton-model provides
the correct framework for high-energy processes in general came from its
success in describing the Drell-Yan process (1971).

This was the birth of quantitative hadron collider phenomenology.
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LHC phenomenology 2015: new discoveries?
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