

# Detectors for Particle Physics

Interaction with Matter

D. Bortoletto
University of Oxford

#### Detecting particles

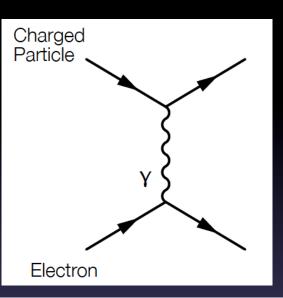
 Every effect of particles or radiation can be used as a working principle for a particle detector.

Claus Grupen

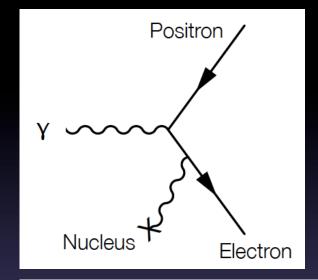


#### Example of particle interactions

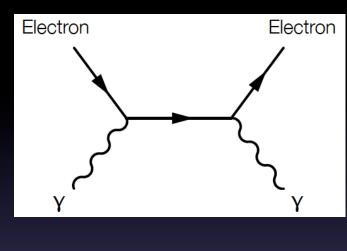
Ionization

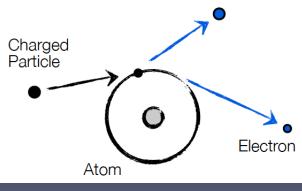


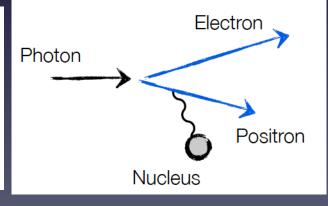
Pair production

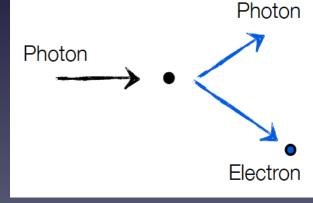


Compton scattering



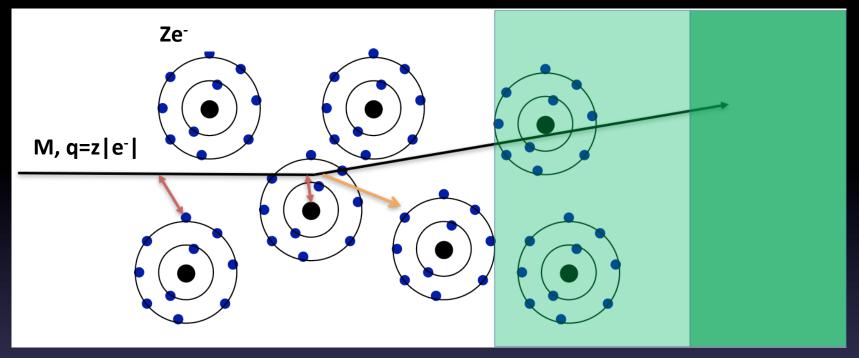






**Delta-electrons** 

#### EM interaction of charged particles with matter



Interaction with the atomic electrons. Incoming particles lose energy and atoms are excited or ionized.

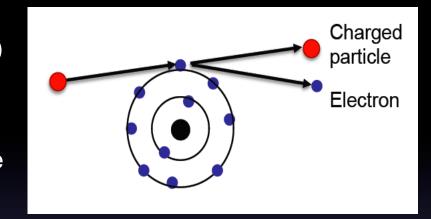
Interaction with the atomic nucleus. Particles are deflected and a Bremsstrahlung photon can be emitted.

If the particle's velocity is > the velocity of light in the medium → Cherenkov Radiation.

When a particle crosses the boundary between two media, there is a probability ≈1% to produce an X ray photon Transition radiation.

#### Energy Loss by Ionization

- Assume:  $Mc^2 \gg m_e c^2$  (calculation for electrons and muons are more complex)
- Interaction is dominated by elastic collisions with electrons
  - The trajectory of the charged particle is unchanged after scattering
- Energy is transferred to the electrons



Energy loss (- sign)

Bethe-Bloch Formula

$$-\left\langle \frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[ \frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\rm max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Classical derivation in backup slides agrees with QM within a factor of 2

 $\propto 1/\beta^2 \cdot \ln(\text{const} \cdot \beta^2 \gamma^2)$ 

# Energy loss by ionization



The Bethe-Bloch equation for energy loss

Valid for heavy charged particles ( $m_{incident} >> m_e$ ), e.g. proton, k,  $\pi$ ,  $\mu$ 

$$-\left\langle \frac{dE}{dx} \right\rangle = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[ \ln(\frac{2m_e c^2 \beta^2 \gamma^2}{I^2} W_{\text{max}}) - 2\beta^2 - \delta(\beta \gamma) - \frac{C}{Z} \right]$$
=0.1535 MeV cm²/g

Fundamental columns of the colu

$$\frac{dE}{dx} \propto \frac{Z^2}{\beta^2} \ln(a\beta^2 \gamma^2)$$

#### **Fundamental constants**

r<sub>e</sub>=classical radius of electron m<sub>e</sub>=mass of electron N<sub>a</sub>=Avogadro's number c =speed of light

#### Absorber medium

= mean ionization potential

Z = atomic number of absorber

A = atomic weight of absorber

= density of absorber

= density correction

C = shell correction

#### Incident particle

= charge of incident particle

 $\beta$  = v/c of incident particle

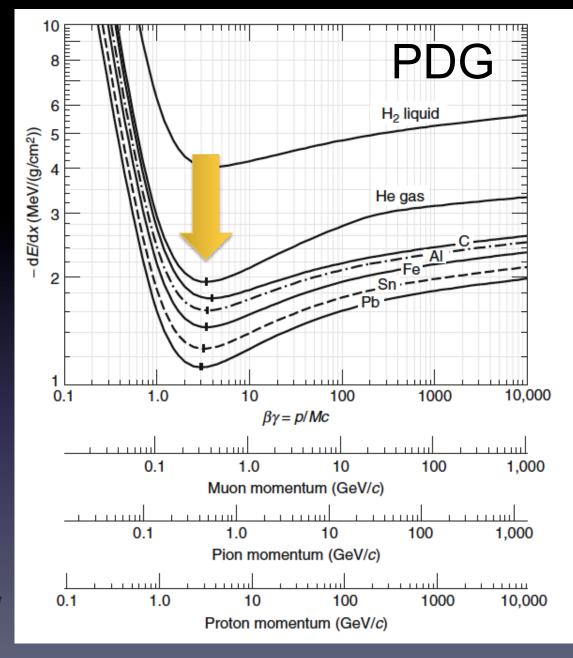
 $\gamma = (1-\beta^2)^{-1/2}$ 

W<sub>max</sub>= max. energy transfer in one collision

$$r_e = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{m_e c^2}$$

#### The Bethe-Bloch Formula

- Common features:
  - fast growth, as 1/β², at low energy
  - wide minimum in the range3 ≤ βγ ≤ 4,
  - slow increase at high  $\beta \gamma$ .
- A particle with dE/dx near the minimum is a minimumionizing particle or mip.
- The mip's ionization losses for all materials except hydrogen are in the range 1-2 MeV/(g/cm²)
  - increasing from large to low Z of the absorber.

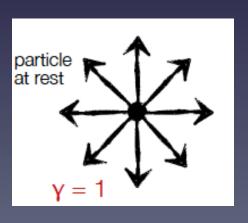


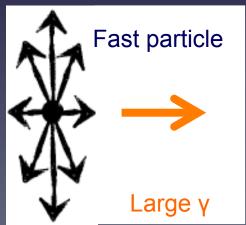
# Understanding Bethe-Bloch

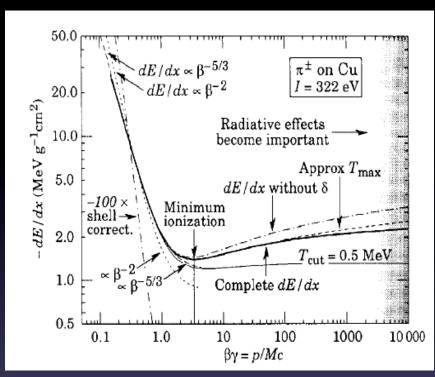
- dE/dx falls like 1/β²
   [exact dependence β<sup>-5/3</sup>]
  - Classical physics: slower particles "feel" the electric force from the atomic electron more

$$\Delta p_{\perp} = \int F_{\perp} dt = \int F_{\perp} \frac{dt}{dx} dx = \int F_{\perp} \frac{dx}{v}$$

- Relativistic rise as βγ>4
  - Transversal electric field increases due to Lorentz boost







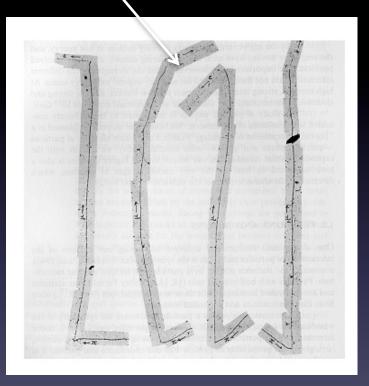
#### Shell corrections

- if particle v ≈ orbital velocity of electrons, i.e. βc ~ v<sub>e</sub>. Assumption that electron is at rest breaks down → capture process is possible .
- Density effects due to medium polarization (shielding) increases at high γ

# Understanding Bethe-Bloch

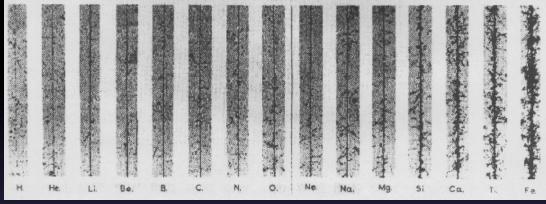
Small energy loss

→ Fast Particle



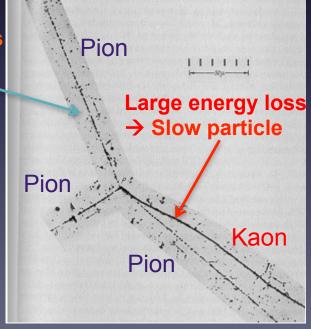
Discovery of muon and pion

Cosmic rays: dE/dx≈z²



Small energy loss

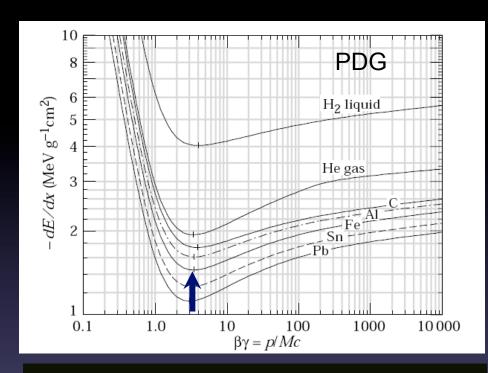
→ Fast particle



D. Bortoletto Lecture 2

#### Bethe-Bloch: Order of magnitude

- For  $Z \approx 0.5 A$ 
  - 1/ρ dE/dx ≈ 1.4 MeV cm  $^2$ /g for βγ ≈ 3
- Can a 1 GeV muon traverse 1 m of iron ?
  - Iron: Thickness = 100 cm;  $\rho$  = 7.87 g/cm<sup>3</sup>
  - dE ≈ 1.4 MeV cm <sup>2</sup>/g × 100 cm ×7.87g/cm<sup>3</sup>= 1102 MeV
  - This is only an average value
- dE/dx must be taken in consideration when you are designing an experiment

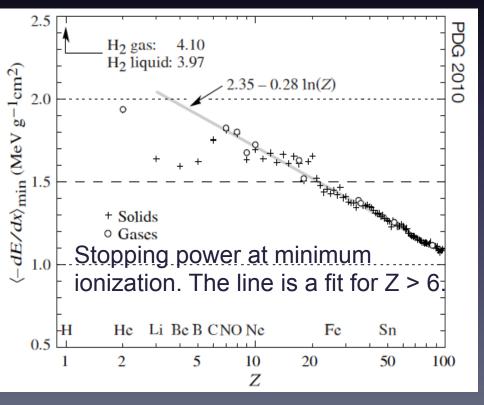


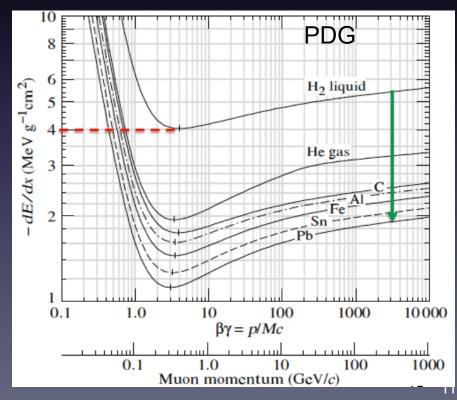
This number must be multiplied with ρ [g/cm³] of the Material → dE/dx [MeV/cm]

# Bethe-Bloch dependence on Z/A

$$-\left\langle \frac{dE}{dx} \right\rangle = 2\pi N_a r_e^2 m_e c^2 \rho \left( \frac{Z}{A} \right) \frac{z^2}{\beta^2} \left[ \ln(\frac{2m_e c^2 \beta^2 \gamma^2}{I^2} W_{\text{max}}) - 2\beta^2 - \delta(\beta \gamma) - \frac{C}{Z} \right]$$

- Minimum ionization ≈ 1 2 MeV/g cm<sup>-2</sup>. For H<sub>2</sub>: 4 MeV/g cm<sup>-2</sup>
- Linear decrease as a function of Z of the absorber



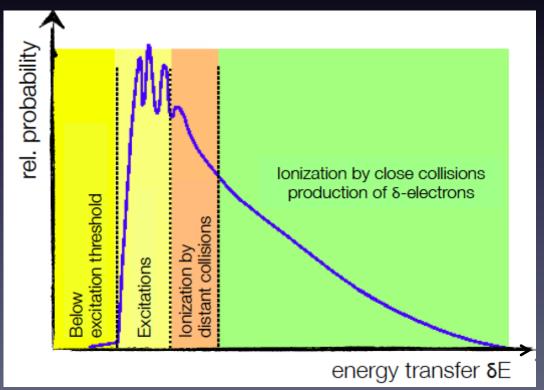


#### dE/dx Fluctuations

The statistical nature of the ionizing process results in large fluctuations of energy loss (Δ) in absorbers which are thin compared with the particle range.

 $\Delta E = \sum_{n=1}^{N} \delta E_n$ 

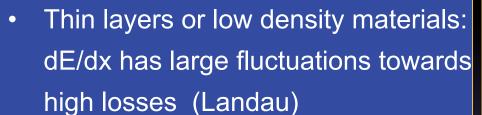
N= number of collisions δE=energy loss in a single collision

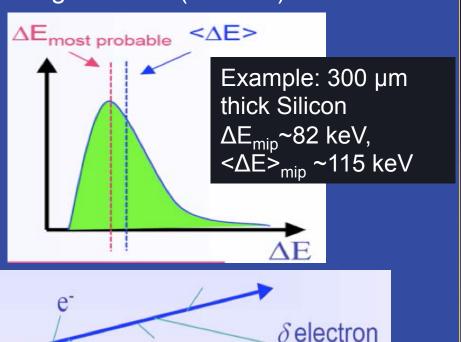


- Ionization loss is distributed statistically
- Small probability to have very high energy delta-rays (or knockon electrons)

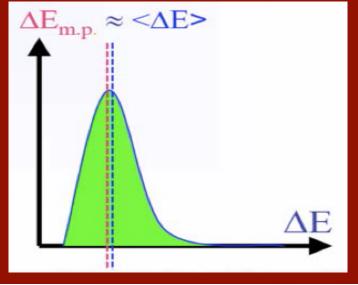
#### dE/dx Fluctuations

- A real detector (limited granularity) cannot measure <dE/dx>
  - It measures the energy  $\Delta E$  deposited in layers of finite thickness  $\Delta x$
  - Repeated measurements are needed





 Thick layers and high density materials: the dE/dx is a more Gaussian-like (many collisions



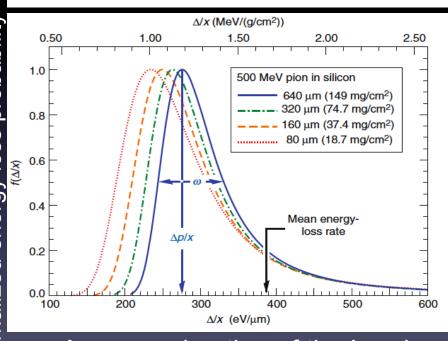


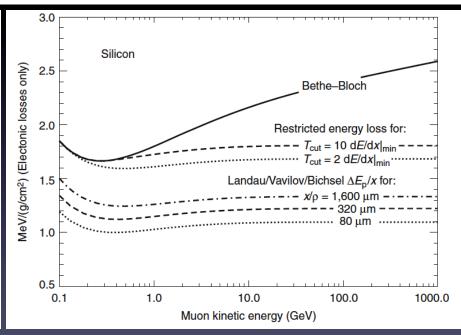
# ormalized energy loss probabilit

#### Landau Distribution

For thin (not too thin) absorbers the Landau distribution offers a good approximation of the energy loss (Gaussian-like + tail due to high energy delta-rays which might leave the detector)

Landau distribution- Most Probable Value (MPV) dE/dx ≠ average dE/dx





An approximation of the Landau distribution:

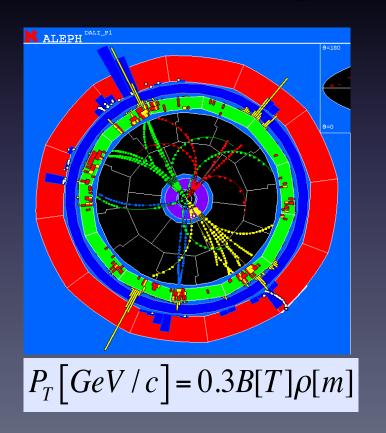
$$L(\lambda) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(\lambda + e^{-\lambda})\right]$$

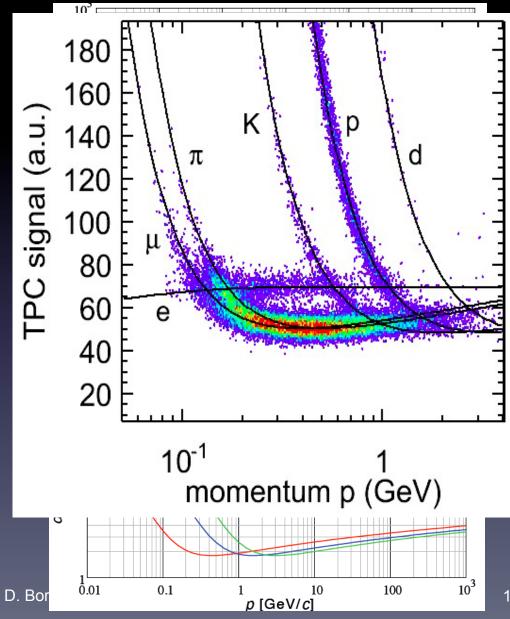
$$\lambda = \frac{\Delta E - \Delta E^{MP}}{\xi}$$

ξ Is material dependent

#### dE/dx and particle ID

- dE/dx is a function of βγ = P/Mc and it is independent of M.
- By measuring P and the energy loss independently → Particle ID in certain momentum regions



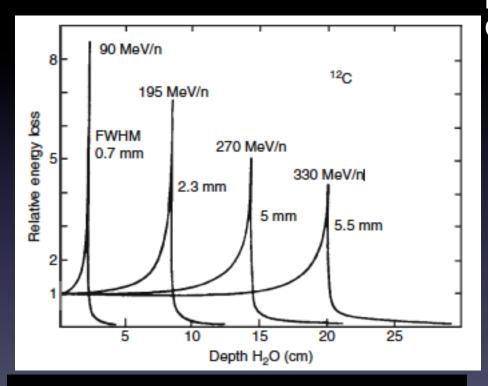


#### Energy loss at small momenta

• If the energy of the particle falls below  $\beta\gamma=3$  the energy loss rises as  $1/\beta^2$ 

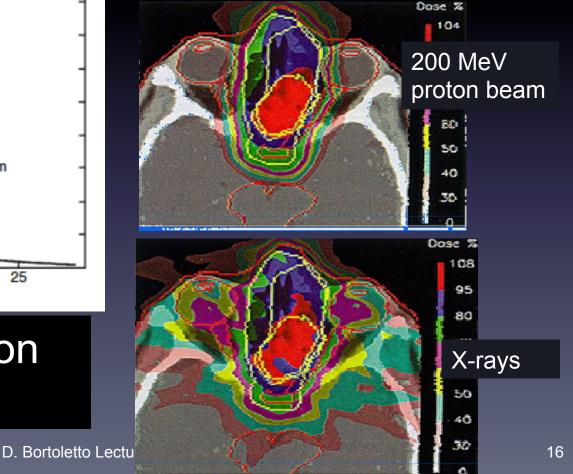
 $\rightarrow$  Particles deposit most of their energy at the end of their track  $\rightarrow$ 

Bragg peak



Critical for radiation therapy

Hadron therapy: Protons 200 MeV 1 nA Carbon ions 4800 MeV 0.1 nA



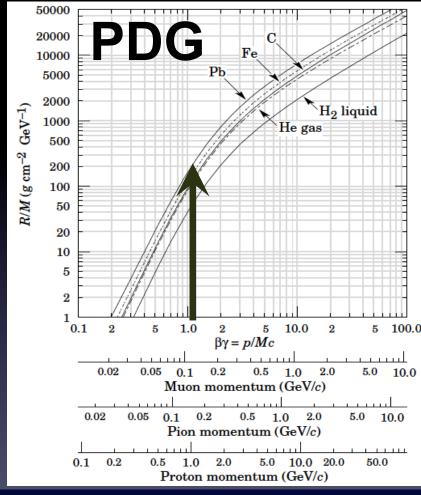
# Range of particles in matter

A particle of mass M and kinetic Energy E<sub>0</sub> enters matter and looses energy until it comes to rest at a distance R.

$$R(E_0) = \int_{E_0}^0 \frac{1}{dE / dx} dE$$

$$R(\beta_0 \gamma_0) = \frac{Mc^2}{\rho} \frac{1}{z^2} \frac{A}{Z} f(\beta_0 \gamma_0)$$
$$\frac{\rho R(\beta_0 \gamma_0)}{Mc^2} = \frac{1}{z^2} \frac{A}{Z} f(\beta_0 \gamma_0)$$

- R/M is ≈ independent of the material
- R is a useful concept only for lowenergy hadrons (R <λ<sub>l</sub> =the nuclear interaction length)



1GeV p in Pb  $\rho(Pb) = 11.34 \text{ g/cm}^3$ R/M(Pb)=200 g cm<sup>-2</sup> GeV<sup>-1</sup> D. Bortoletto Le R=(200/11.34) cm  $\approx 20$  cm

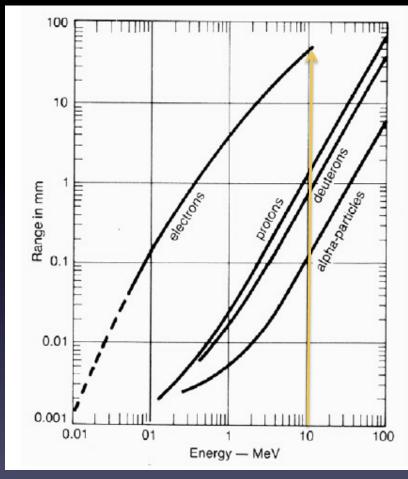
# Range of particles in matter

A particle of mass M and kinetic Energy E<sub>0</sub> enters matter and looses energy until it comes to rest at a distance R.

$$R(E_0) = \int_{E_0}^{0} \frac{1}{dE / dx} dE$$

$$R(\beta_0 \gamma_0) = \frac{Mc^2}{\rho} \frac{1}{z^2} \frac{A}{Z} f(\beta_0 \gamma_0)$$
$$\frac{\rho R(\beta_0 \gamma_0)}{Mc^2} = \frac{1}{z^2} \frac{A}{Z} f(\beta_0 \gamma_0)$$

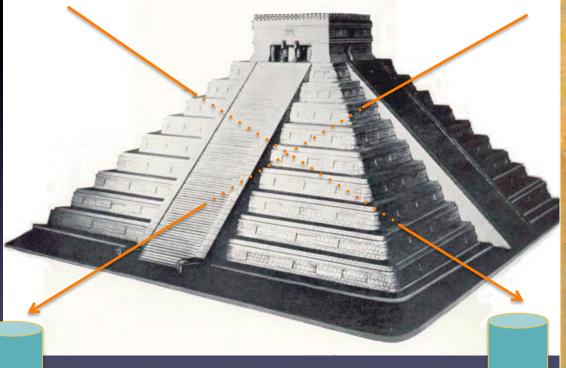
- R/M is ≈ independent of the material
- R is a useful concept only for lowenergy hadrons (R <λ<sub>I</sub> =the nuclear interaction length)

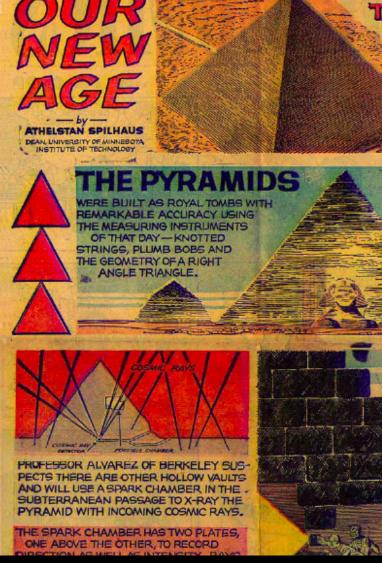


Mean free path in plastic scintillator for various charged particle

#### Muon Tomog 🕷

 L. Alvarez in the 60s used the measurement of a cosmic ray muons to look for hidden chambers in Pyramid → Muon Tomography (Science 167, 832)



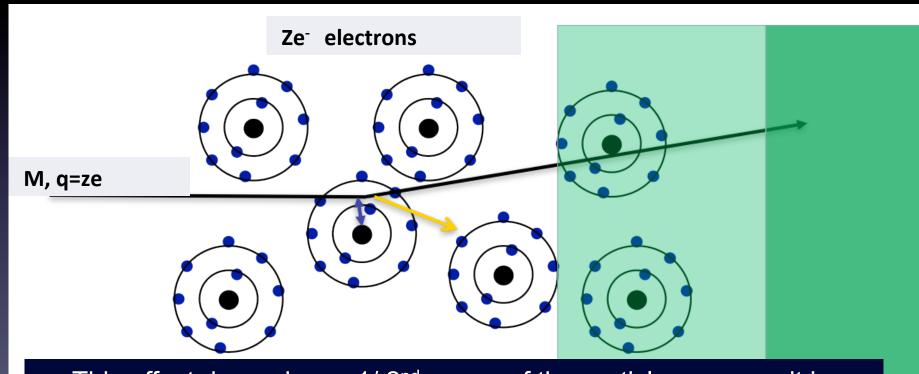


- No hidden chambers
- Now used for archeology in the Yucatan, detection of illicitly trafficked Special Nuclear Material etc.

#### Bremsstrahlung

A charged particle of mass M and charge q=ze is deflected by a nucleus of charge Ze which is partially 'shielded' by the electrons. During this deflection the charge is 'accelerated' and therefore it can radiate a photon ->

Bremsstrahlung.

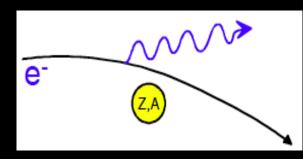


This effect depends on 1/2<sup>nd</sup> power of the particle mass, so it is relevant for electrons and very high energy muons

#### Energy loss for electrons and muons

Bremsstrahlung=photon emission by an electron accelerated in Coulomb field of nucleus

$$\frac{dE}{dx} = 4\alpha N_A \frac{z^2 Z^2}{A} \left( \frac{1}{4\pi \varepsilon_0} \frac{e^2}{mc^2} \right)^2 E \ln \frac{183}{Z^{1/3}}$$



 $-\left\langle \frac{dE}{dx}\right\rangle \propto \frac{E}{m^2}$ 

- Dominant process for  $E_e > 10-30 \text{ MeV}$ 
  - energy loss proportional to 1/m²
  - Important mainly for electrons and h.e. muons

For electrons 
$$\frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} r_e^2 E \ln \frac{183}{Z^{1/3}}$$

If 
$$X_0 \approx \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}}$$
 
$$\frac{dE}{dx} = \frac{E}{X_0}$$
 
$$E = E_0 e^{-x/X_0}$$

$$X_0$$
 = radiation length in [g/cm<sup>2</sup>]

$$\frac{dE}{dx} = \frac{E}{X_0}$$

$$E =$$

$$E = E_0 e^{-x/X_0}$$

After passing a layer of material of thickness  $X_0$  the electron has 1/e of its initial energy.

#### Total energy loss and critical energy

Critical energy

$$\left. \frac{dE}{dx}(E_c) \right|_{brems} = \left. \frac{dE}{dx}(E_c) \right|_{ion}$$

For solid and liquids

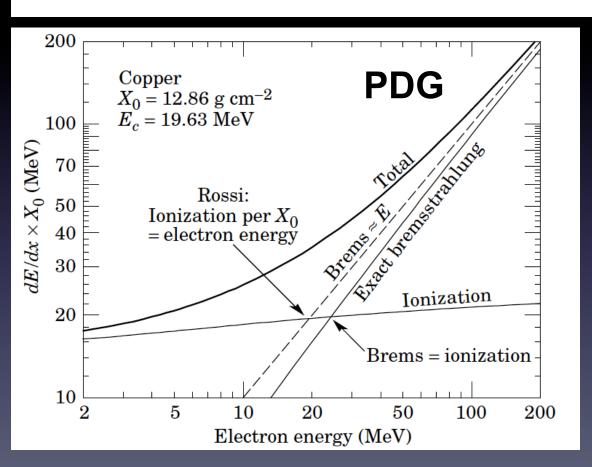
$$E_c = \frac{610 \text{ MeV}}{Z + 1.24}$$

For gasses

$$E_c = \frac{710 \text{ MeV}}{Z + 0.92}$$

Example Copper: E<sub>c</sub> ≈ 610/30 MeV ≈ 20 MeV

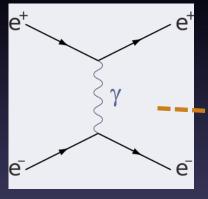
$$\left(\frac{dE}{dx}\right)_{\text{Tot}} = \left(\frac{dE}{dx}\right)_{\text{Ion}} + \left(\frac{dE}{dx}\right)_{\text{Brems}}$$



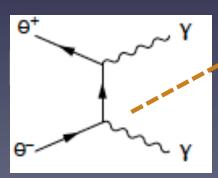
#### Møller scattering

# e e e

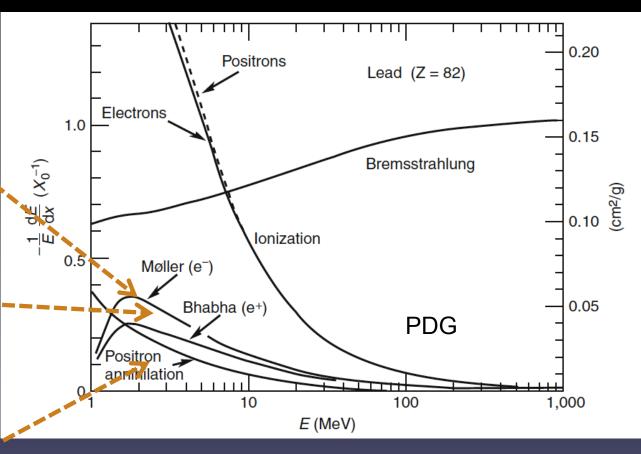
Bhabha scattering



Positron annihilation



# Electron energy loss



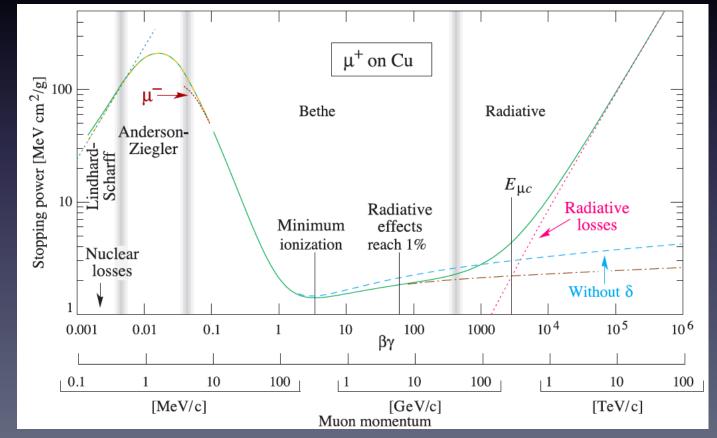
Fractional energy loss per radiation length in lead as a function of the electron or positron energy

# Energy loss summary

#### Since m<sub>u</sub>/m<sub>e</sub>≈200 E<sub>c</sub> for muons ≈ 400 GeV.

$$-\left\langle \frac{dE}{dx} \right\rangle_{brem} \propto \frac{E}{m^2}$$

$$\left\langle \frac{dE}{dx} \right\rangle_{brem,\mu} \propto \frac{1}{40,000} \left\langle \frac{dE}{dx} \right\rangle_{brem,2}$$



- Muons with energies > ~10
   GeV can penetrate thick layers of matter
- This is the key signature for muon identification

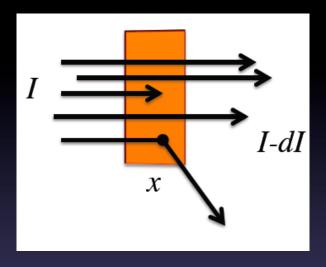
#### Interaction of photons with matter

A photon can disappear or its energy can change dramatically at every interaction

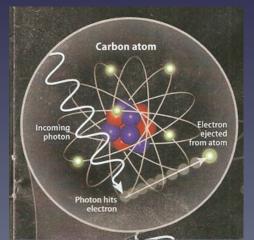
$$I(x) = I_0 e^{-\mu x}$$
  $\mu = \frac{N_A}{A} \sum_{i=1}^{3} \sigma_i$ 

$$\lambda = \frac{1}{\mu}$$

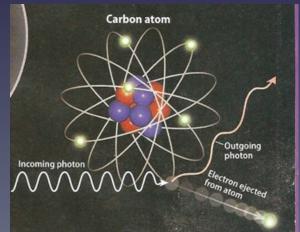
μ=total attenuation coefficient σ<sub>i</sub>=cross section for each process



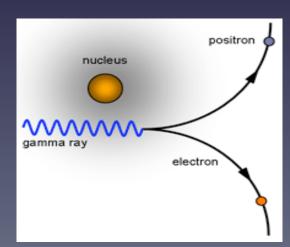
#### Photoelectric Effect



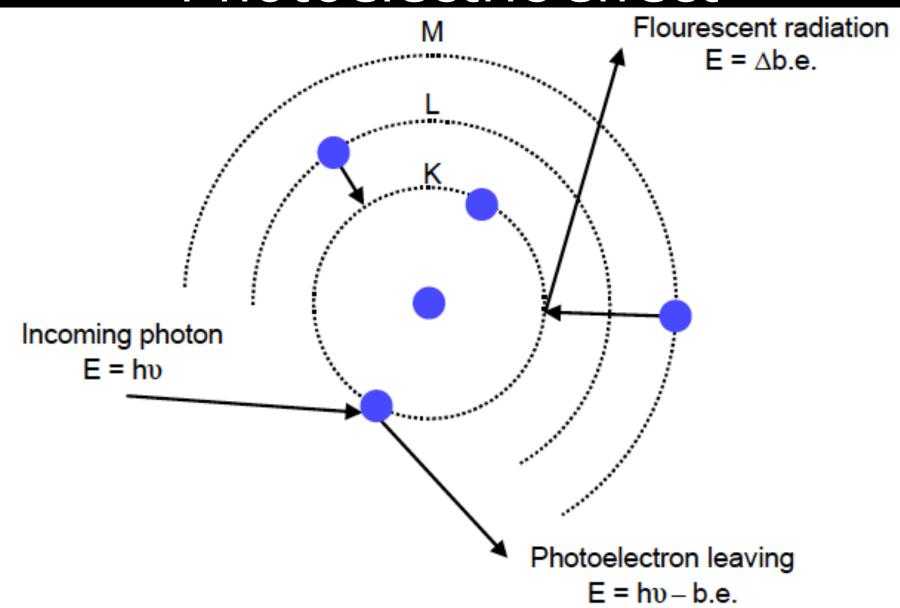
#### **Compton Scattering**



#### Pair production



#### Photoelectric effect



#### Compton scattering

- Best known electromagnetic process (Klein–Nishina formula)
  - for  $\mathbf{E}_{\lambda} \ll \mathbf{m_e c^2}$

$$\sigma_c \propto \sigma_{Th}(1-\varepsilon)$$

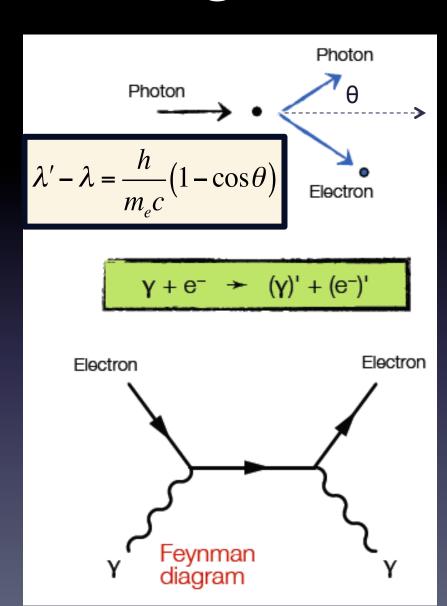
- for  $\mathbf{E}_{\lambda} >> \mathbf{m_e c^2}$ 

$$\sigma_c \propto \frac{\ln \varepsilon}{\varepsilon} Z$$

where

$$\sigma_{Th} = \frac{8\pi}{3r_e^2} = 0.66 \ barn$$

$$\varepsilon = \frac{E_{\lambda}}{m_e c^2}$$



#### Compton scattering

From E and p conservation yields the energy of the scattered photon

$$E'_{\gamma} = \frac{E_{\gamma}}{1 + \varepsilon (1 - \cos \theta)}$$

$$\varepsilon = \frac{E_{\lambda}}{m_{e}c^{2}}$$

$$\varepsilon = \frac{E_{\lambda}}{m_e c^2}$$

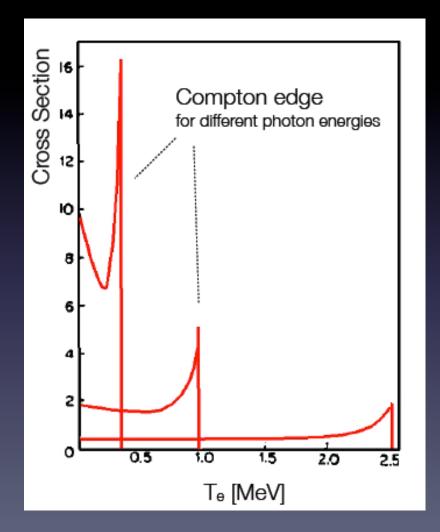
Kinetic energy of the outgoing electron:

$$T_e = E_{\gamma} - E'_{\gamma} = E_{\gamma} \frac{\varepsilon (1 - \cos \theta)}{1 + 2\varepsilon}$$

The max. electron recoil is for  $\theta = \pi$ 

$$T_{\text{max}} = E_{\gamma} \frac{2\varepsilon}{1 + 2\varepsilon}$$
$$\Delta E = E_{\gamma} - T_{\text{max}} = E_{\gamma} \frac{1}{1 + 2\varepsilon}$$

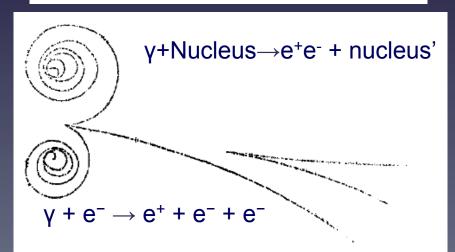
Transfer of complete γ-energy via Compton scattering not possible

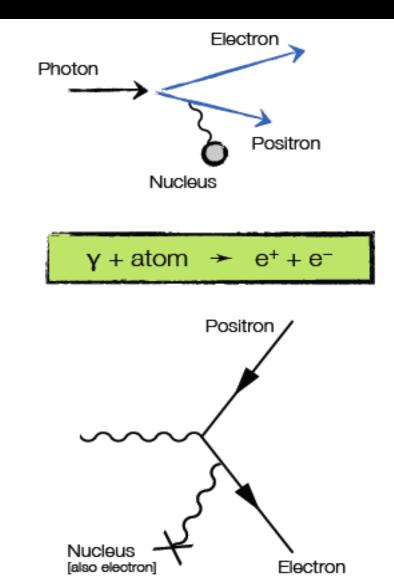


#### Pair production

- At E>100 MeV, electrons lose their energy almost exclusively by bremsstrahlung while the main interaction process for photons is electron-positron pair production.
- Minimum energy required for this process 2 m<sub>e</sub> + Energy transferred to the nucleus

$$E_{\gamma} \ge 2m_e c^2 + \frac{2m_e c^2}{m_{Nuleus}} \ge 2m_e c^2$$





#### Pair production

If  $\mathbf{E}_{\lambda} >> \mathbf{m_e c^2}$ 

$$\sigma_{pair} = 4\alpha r_e^2 Z^2 \left(\frac{7}{9} \ln \frac{183}{Z^{1/3}} - \frac{1}{54}\right) \text{ [cm}^2/\text{atom]}$$

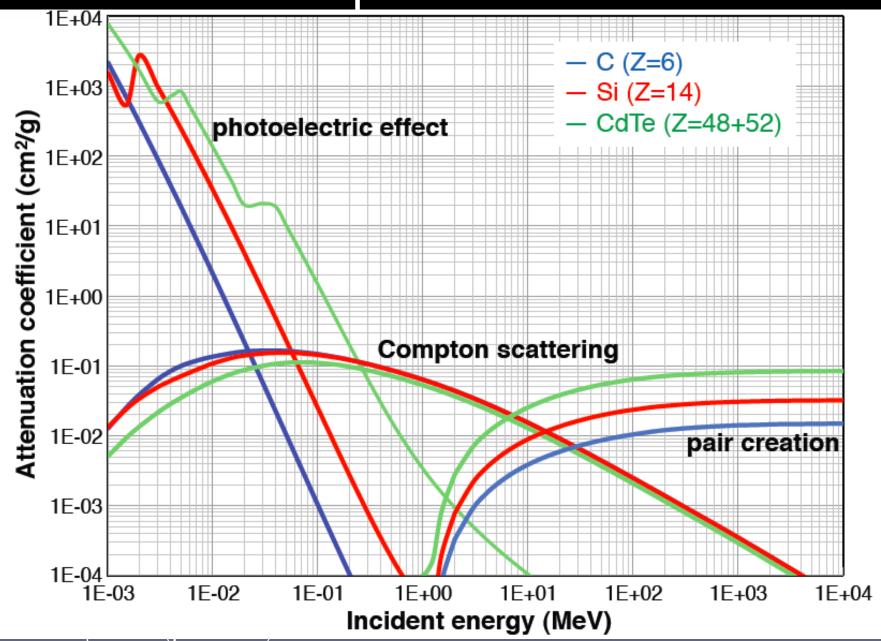
 Using as for Bremsstrahlung the radiation length and neglecting the small 1/54 term

$$X_0 = \frac{A}{4\pi N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}}$$

$$\sigma_{pair} = \frac{7}{9} \frac{N_A}{A} \frac{1}{X_0}$$

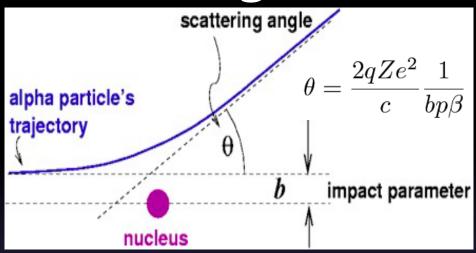
|                      | ρ [g/cm³]            | X <sub>0</sub> [cm] |
|----------------------|----------------------|---------------------|
| H <sub>2</sub> [fl.] | 0.071                | 865                 |
| С                    | 2.27                 | 18.8                |
| Fe                   | 7.87                 | 1.76                |
| Pb                   | 11.35                | 0.56                |
| Luft                 | 1.2·10 <sup>-3</sup> | 30·10 <sup>3</sup>  |

Interaction of photons with matter



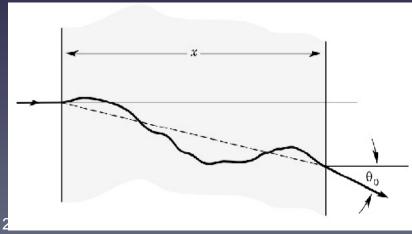
#### Multiple scattering

- A particle passing through material undergoes also multiple deflections due to Coulomb scattering with the nuclei
  - The scattering angle as a function of the thickness x is



$$\theta_{\rm rms}^{\rm proj} = \sqrt{\langle \theta^2 \rangle} = \frac{13.6 \,\text{MeV}}{\beta c p} z \sqrt{\frac{x}{X_0}} [1 + 0.038 \ln(x/X_0)]$$

- Where:
  - p (in MeV/c) is the momentum,
  - βc the velocity,
  - z the charge of the scattered particle
  - $-x/X_0$  is the thickness of the medium in units of radiation length  $(X_0)$ .

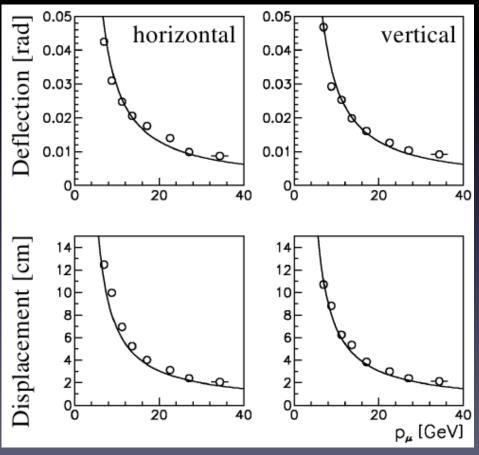


D. Bortoletto Lecture 2

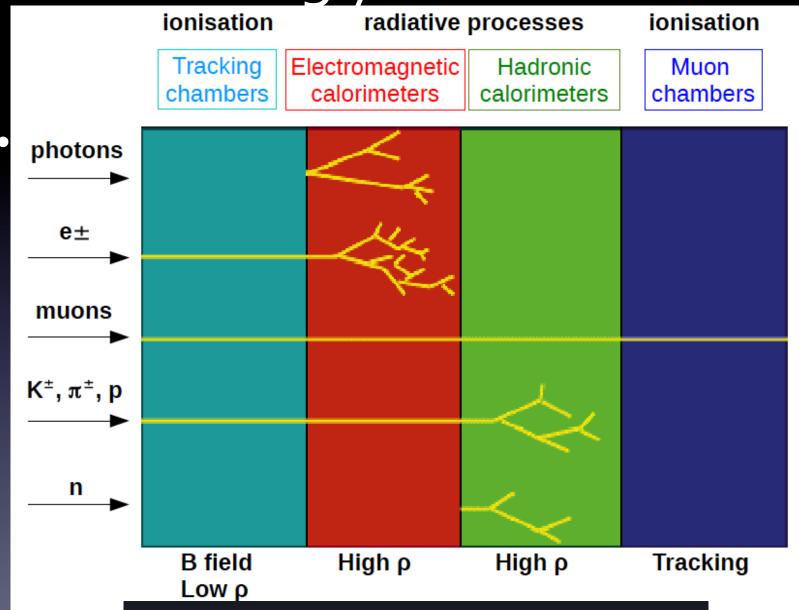
#### Multiple scattering

- Particularly relevant for µ in highenergy physics, but also common for low-energy e
- Hadrons generally undergo nuclear interactions before multiple scattering and energy loss become significant.
- Example: muon with E=14 GeV  $\theta_0 \sim 13.6 / 14 \times 10^3 \ \sqrt{(x/x_0)}$   $\sim 1 \ \text{mRad} \ \sqrt{(x/x_0)}$  Iron  $X_0 = 1.8 \ \text{cm}$ ;  $\mu$  at E=10 GeV after 100 cm Fe:  $\theta_0 \sim 13.6 / 10^4 \ \sqrt{(100/1.8)} \sim 10 \ \text{mRad}$

Example of Multiple scattering: Muons before and after 320 radiation lengths

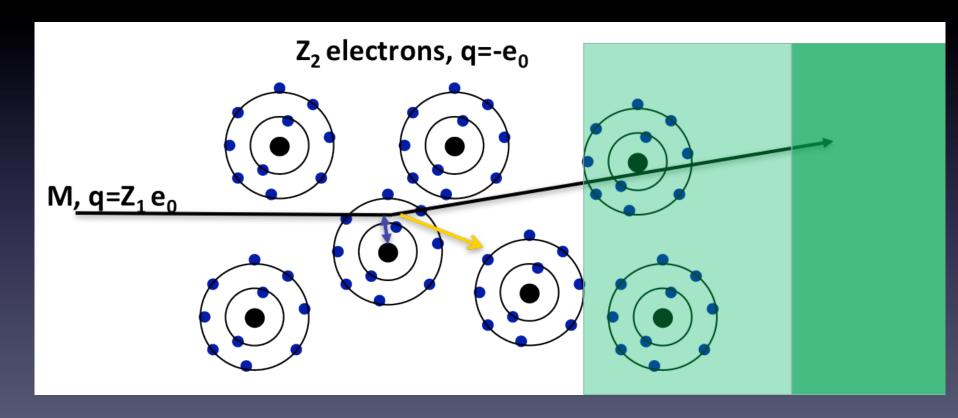


# Building your detector



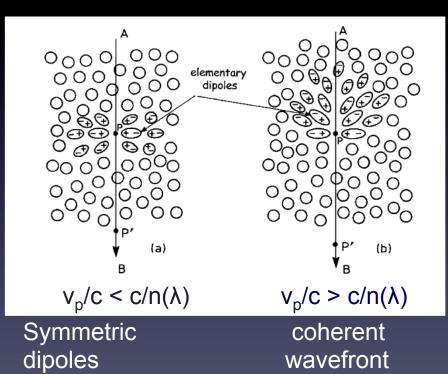
#### Energy loss by photon emission

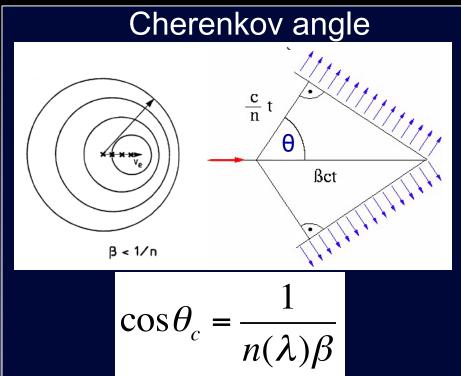
- Emission of Cherenkov light
- Emission of transition radiation



#### Cherenkov emission

If the velocity of a particle is such that  $\beta = v_p/c > c/n(\lambda)$  where  $n(\lambda)$  is the index of refraction of the material, a pulse of light is emitted around the particle direction with an opening angle (θ<sub>c</sub>)

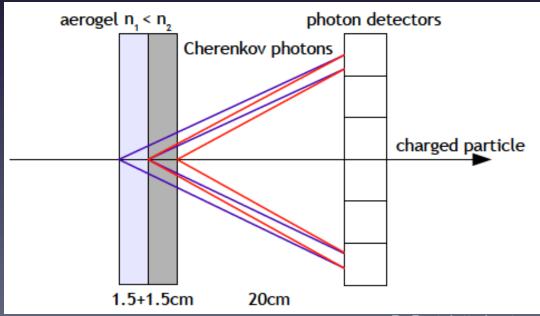


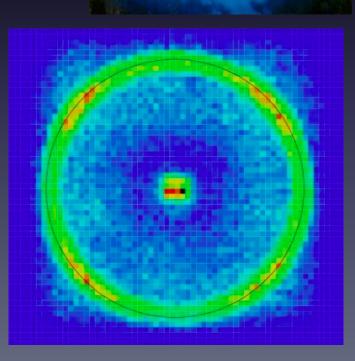


- The threshold velocity is  $\beta_c = 1/n$
- At velocity below β<sub>c</sub> no light is emitted

Cherenkov photon emissic glowing in the core of a reactor

- Cherenkov emission is a weak effect and causes no significant energy loss (<1%)</li>
- It takes place only if the track L of the particle in the radiating medium is longer than the wavelength λ of the radiated photons.
- Typically O(1-2 keV / cm) or O(100-200) visible photons /cm

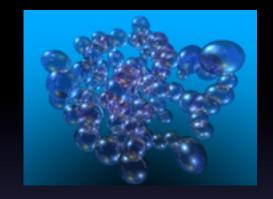




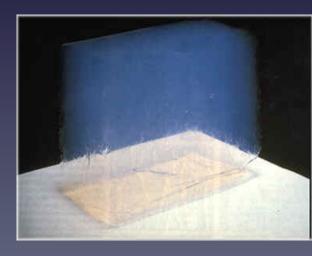
Cherenkov radiation

## Cherenkov radiators

| Material        | n-1      | $\beta_{c}$ | $\theta_{\rm c}$ | photons/cm |
|-----------------|----------|-------------|------------------|------------|
| solid natrium   | 3.22     | 0.24        | 76.3             | 462        |
| Lead sulfite    | 2.91     | 0.26        | 75.2             | 457        |
| Diamond         | 1.42     | 0.41        | 65.6             | 406        |
| Zinc sulfite    | 1.37     | 0.42        | 65               | 402        |
| silver chloride | 1.07     | 0.48        | 61.1             | 376        |
| Flint glass     | 0.92     | 0.52        | 58.6             | 357        |
| Lead crystal    | 0.67     | 0.6         | 53.2             | 314        |
| Plexiglass      | 0.48     | 0.66        | 47.5             | 261        |
| Water           | 0.33     | 0.75        | 41.2             | 213        |
| Aerogel         | 0.075    | 0.93        | 21.5             | 66         |
| Pentan          | 1.70E-03 | 0.9983      | 6.7              | 7          |
| Air             | 2.90E-03 | 0.9997      | 1.38             | 0.3        |
| Не              | 3.30E-05 | 0.999971    | 0.46             | 0.03       |



Silica Aerogel



## Cherenkov photon emission

The number of Cherenkov photons produced by unit path length by a charged particle of charge z is

$$\frac{d^2N}{d\lambda dx} = \frac{2\pi\alpha z^2}{\lambda^2} \left( 1 - \frac{1}{\beta^2 n^2(\lambda)} \right) = \frac{2\pi\alpha z^2}{\lambda^2} \sin^2 \theta_c$$

- Note the wavelength dependence ~ 1/λ²
- The index of refraction n is a function of photon energy E=hv, as is the sensitivity of the transducer used to detect the light.
- Therefore to get the number of photon we must integrate over the sensitivity range:

$$\frac{d^2N}{dx} = \int_{350nm}^{550nm} d\lambda \frac{dN}{d\lambda dx} = 475z^2 \sin\theta_c \quad \text{photons/cm}$$

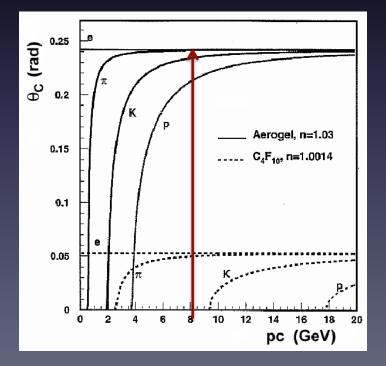
#### Threshold Cherenkov Counter

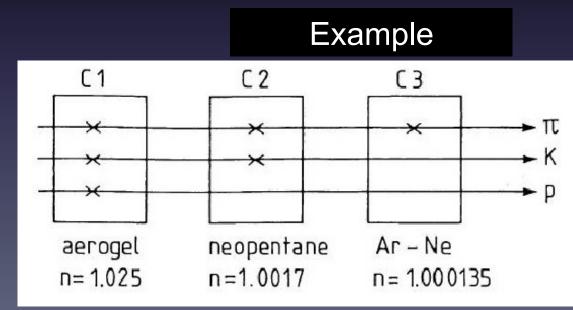
Combination of threshold Cherenkov counters can identify particles

$$p \propto m\gamma\beta = \frac{m\beta}{\sqrt{1-\beta^2}} \qquad m_1 > m_2 \Rightarrow v_1 < v_2$$

$$m_{th} = \frac{p\sqrt{1-\beta_{th}^2}}{\beta_{th}} \quad \Rightarrow \quad n = \sqrt{\frac{m_{tr}^2}{p^2} + 1}$$

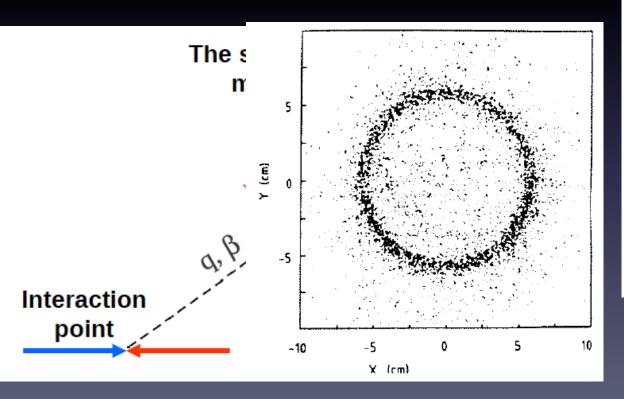
If m>m<sub>th</sub> no light

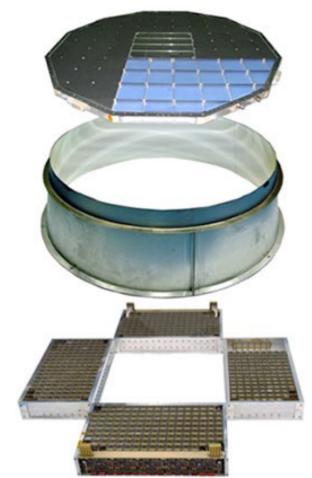




#### Ring Imaging Cherenkov counters (RICH)

- Particles pass through a radiator, the radiated photons may be directly collected by (or are focused by a mirror onto) a positionsensitive photon detector.
- The velocity is determined by a measurement of the radius r of the ring, on which the photons are detected

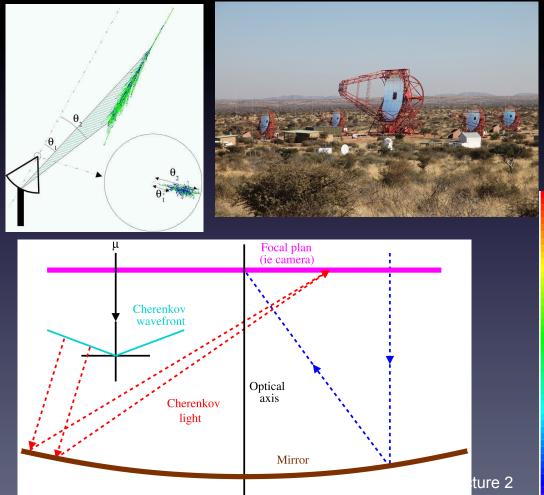




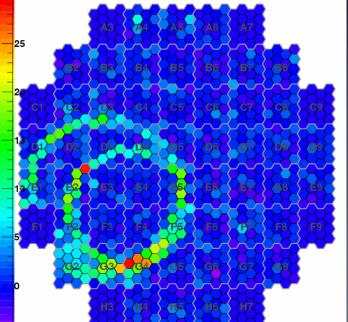
AMS RICH exploded view: the radiator, the conical mirror and the PMTs matrix

# Cherenkov Radiations and ground based gamma-ray telescopes

Principle of Air Cherenkov Telescope (ACT)

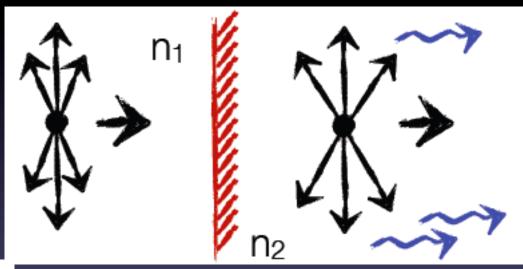


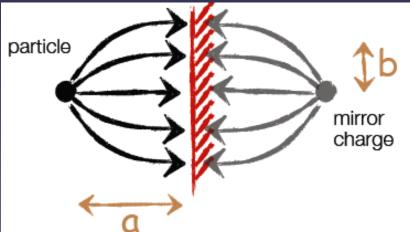




## Transition radiation

- Transition radiation occurs if a relativist particle (large γ) passes the boundary between two media with different refraction indices (n₁≠n₂) [predicted by Ginzburg and Frank 1946; experimental confirmation 70ies]
- Effect can be explained by re-arrangement of electric field
- A charged particle approaching a boundary creates a dipole with its mirror charge

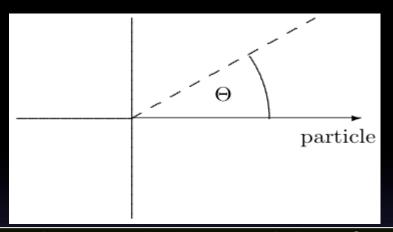




The time-dependent dipole field causes the emission of electromagnetic radiation

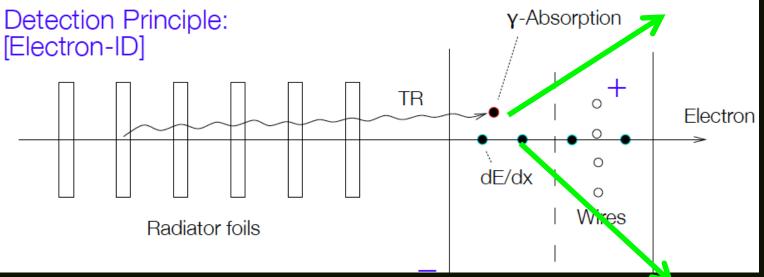
$$S = \frac{1}{3}\alpha z^2 \gamma \hbar \omega_P \quad (\hbar \omega_P \approx 28.8 \sqrt{\frac{Z\rho}{A}} eV)$$

#### Transition Radiation



- Typical emission angle: θ=1/γ
- Energy of radiated photons: ~ γ
- Number of radiated photons: αz²
- Effective threshold: γ > 1000

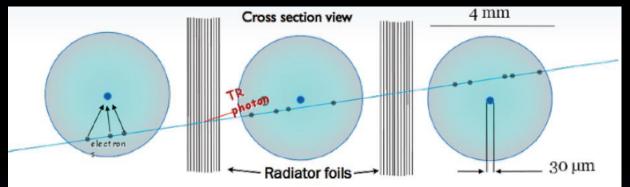
 Use stacked assemblies of low Z material with many transitions and a detector with high Z



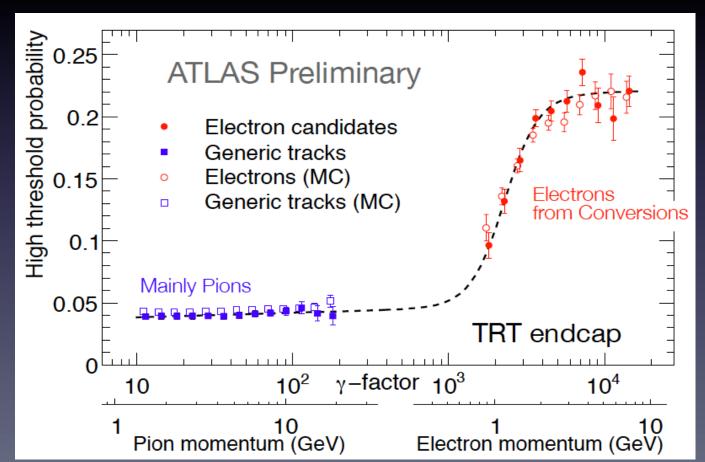
Note: Only X-ray (E>20keV) photons can traverse the many radiators without being absorbed

Fast signal

## Transition radiation detector (ATLAS)

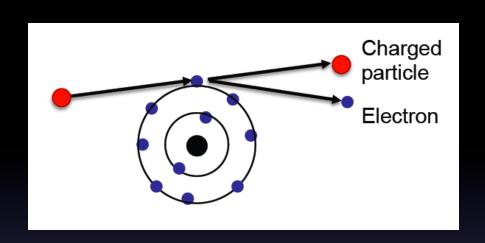


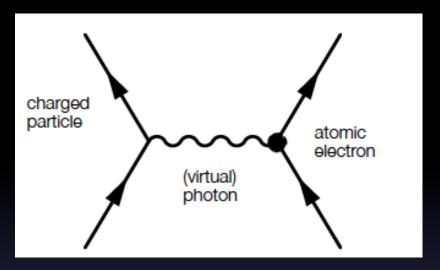
370,000 drift tubes. Each layer of straws interleaved with polypropylene as a radiator



## BACKUP information

## Energy loss by ionization





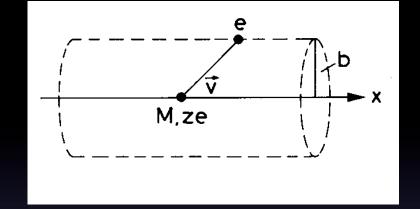
- First calculate for Mc<sup>2</sup> ≫ m<sub>e</sub>c<sup>2</sup> :
- Energy loss for heavy charged particle [dE/dx for electrons more complex]
- The trajectory of the charged particle is unchanged after scattering

$$\frac{dE}{dx} \propto \frac{Z^2}{\beta^2} \ln(\alpha \beta^2 \gamma^2)$$

a= material dependent

## Bohr's Classical Derivation 1913

- Particle with charge Ze and velocity v moves through a medium with electron density n.
- Electrons considered free and initially at rest
- The momentum transferred to the electron is:



$$\Delta p_{\perp} = \int F_{\perp} dt = \int F_{\perp} \frac{dt}{dx} dx = \int F_{\perp} \frac{dx}{v}$$

 $\Delta p_{\parallel}$ : averages to zero because of symmetry

Gauss'Law: 
$$\int E_{\perp}(2\pi b) dx = 4\pi (ze)$$
$$\int E_{\perp} dx = \frac{4ze}{b}$$

$$F_{\perp} = eE_{\perp}$$

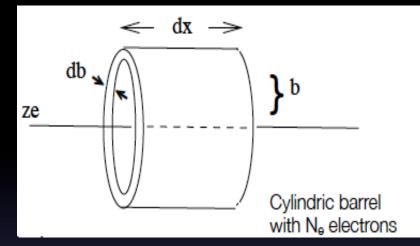
$$\Delta p_{\perp} = e \int E_{\perp} \frac{dx}{v}$$

$$\Delta p_{\perp} = \frac{2ze^2}{bv}$$

#### Bohr's Classical Derivation

Energy transfer to a single electron with an impact parameter b

$$\Delta E(b) = \frac{\Delta p^2}{2m_e} \qquad \Delta p_{\perp} = \frac{2ze^2}{bv}$$



- Consider Cylindric barrel: N<sub>e</sub>=n(2πb)⋅db dx
- Energy loss per path length dx for distance between b and b+db in medium with electron density n:

Energy loss
$$-dE(b) = \frac{\Delta p^{2}}{2m_{e}} 2\pi nbdbdx = \frac{(2ze^{2})^{2}}{2m_{e}(bv)^{2}} 2\pi nbdbdx = \frac{4\pi nz^{2}e^{4}}{m_{e}v^{2}} \frac{db}{b} dx$$

■ Diverges for b→0. Integrate in [b<sub>min</sub>, b<sub>max</sub>]

$$-\frac{dE}{dx} = \frac{4\pi nz^2 e^4}{m_e v^2} \int_{b_{\min}}^{b_{\max}} \frac{db}{b} = \frac{4\pi nz^2 e^4}{m_e v^2} \ln \frac{b_{\max}}{b_{\min}}$$

## **Bohr's Classical Derivation**

- Determination of relevant range [b<sub>min</sub>, b<sub>max</sub>]:
- [Arguments: b<sub>min</sub> > λ<sub>e</sub>, i.e. de Broglie wavelength; b<sub>max</sub> < ∞ due to screening ...]</li>

$$b_{\min} = \lambda_e = \frac{h}{p} = \frac{2\pi\hbar}{\gamma m_e v}$$

$$b_{\min} = \frac{\gamma v}{\langle v_e \rangle}$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

$$-\frac{dE}{dx} = \frac{4\pi nz^2 e^4}{m_e c^2 \beta^2} n \ln \frac{m_e c^2 \beta^2 \gamma}{2\pi \hbar \langle v_e \rangle}$$

Deviates by factor 2 from QM derivation

Electron density n=NA·ρ·Z/A
Effective Ionization potential I=h <v<sub>e</sub>>

#### Bohr Calculation of dE/dx

Stopping power

$$-\frac{dE}{dx} = \frac{4\pi N_e z^2 r_e^2 m_e c^2}{\beta^2} \ln \frac{b_{\text{max}}}{b_{\text{min}}}$$

- Determination of the relevant range [b<sub>min</sub>, b<sub>max</sub>]:
  - b<sub>min</sub>: Maximum kinetic energy transferred Bohr formula

$$W_{\text{max}} = \frac{1}{2} \gamma^2 m_e (2v)^2 = 2m_e c^2 \beta^2 \gamma^2$$

$$b_{\text{min}} = \frac{ze^2}{\gamma m_e v^2}$$

b<sub>max</sub>:particle moves faster than e in the atomic orbit. Electrons are bound to atoms with average orbital frequency  $\langle v_e \rangle$ . Interaction time has to be  $\leq \langle 1/v_e \rangle$ 

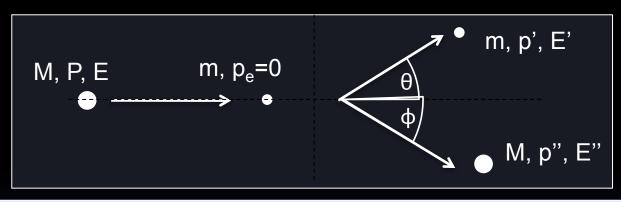
$$b_{\text{max}} = \frac{\gamma v}{\left\langle v_e \right\rangle}$$

 $b_{\text{max}} = \frac{\gamma v}{\langle v \rangle}$  or distance at which the kinetic energy transferred is minimum W<sub>min</sub>= I (mean ionization potential)

We can integrate in this interval an derive the classical Bohr formula

$$-\frac{dE}{dx} = \frac{4\pi N_e z^2 r_e^2 m_e c^2}{\beta^2} \ln \frac{\gamma^2 m v^3}{z e^2 \langle v_e \rangle} = \frac{4\pi N_e z^2 r_e^2 m_e c^2}{\beta^2} \ln \left( \frac{2m_e c \beta^2 \gamma^2}{I} \right)$$

#### Relativistic Kinematic



Energy conservation: 
$$\sqrt{p^2c^2 + M^2c^4} + mc^2 = \sqrt{p''^2c^2 + M^2c^4} + \sqrt{p'^2c^2 + m^2c^4}$$

momentum conservation:  $p = p' \cos \theta + p'' \cos \phi$ 

$$0 = p' \sin \theta + p'' \sin \phi$$

$$p''^2 = p'^2 + p^2 - 2pp'\cos\theta$$

Using energy and momentum conservation we can find the kinetic energy

$$\varepsilon' = \sqrt{p'^2c^2 + m^2c^4} - mc^2 = \frac{2mc^2p^2c^2\cos^2\theta}{mc^2 + \sqrt{p^2c^2 + M^2c^4} - p^2c^2\cos^2\theta}$$

The maximum energy transfer is

$$\varepsilon_{\text{max}}' = \frac{2mp^2}{m^2 + M^2 + 2mE/c^2}$$

## A few examples

What is the deposited energy for a 10 GeV  $\mu$  passing through a 1 cm thick scintillator ? p=  $\gamma$ mv =  $\beta\gamma$ mc  $\Rightarrow \beta\gamma$ =p/mc  $\sim$  10 GeV / 106 MeV  $\sim$  100 ® 10 GeV  $\mu$  = MIP dE/dx'  $\sim$  2 MeV g-1 cm2  $\Rightarrow$   $\Delta$ E =  $\rho$  dE / dx'  $\Delta$ x with  $\rho$   $\sim$  1 g / cm3 for plastic scintillator  $\Rightarrow$   $\Delta$ E  $\sim$  1 g / cm3 °— 2 MeV / g cm2 °— 1 cm = 2 MeV

What is the deposited energy for a 10 GeV  $\mu$  passing through a 1 cm thick cloud chamber ?  $\rho \sim 0.001 \text{ g} / \text{cm}3 \Rightarrow \Delta E = 0.001 \text{ °}--- 2 \text{ °}--- 1 = 2 \text{ keV}$ 

What should be the thickness of a concrete wall ( $\rho \sim 2.5 \text{ g/cm}3$ ) to stop a 450 GeV proton beam ?  $\beta \gamma = p/mc \sim 450 \text{ } \text{@ } 450 \text{ GeV p} \equiv \text{MIP} \Rightarrow \text{dE/dx'} \sim 2 \text{ MeV g-1 cm}2 \Rightarrow \Delta E = 5 \text{ MeV/cm}$   $\Rightarrow e = 450 \ 000/5 = 90 \ 000 \ \text{cm} = 900 \ \text{m}$ 

Nb: nuclear interactions have been neglected here ...

What thickness of air ( $\rho \sim 1 \text{ g / cm3} = 10\text{-}3 \text{ g / I}$ ) stops a 30 MeV/c  $\alpha$  particle ?  $\beta \gamma = p/mc \sim 30 \text{ MeV}/ 3700 \text{ MeV} = 10\text{-}2 \ll 3 \text{ !}$   $\Rightarrow$  dE/dx'  $\sim 8 \text{ MeV g-}1 \text{ cm2}$  °— (0.01)-5/3  $\sim 17 \text{ 235 MeV g-}1 \text{ cm2}$   $\Rightarrow \Delta E = 17 \text{ MeV/cm in air } \Rightarrow e = 30 \text{ MeV}/ 17 \text{ MeV} \sim 1.74 \text{ cm}$ 

## Cherenkov Radiation – Momentum Dependence

- Cherenkov angle θ and number of photons N grows with β
- Asymptotic value for β=1: cos θ<sub>max</sub> = 1/n ; N<sub>∞</sub> = x · 370 / cm (1-1/n²)

