

Electronics, Trigger and Data Acquisition

Summer Student Programme 2015, CERN

Part 3

W.Vandelli CERN/PH-ADT Wainer.Vandelli@cern.ch

1

Event Building

Event Building: network perspective

- Event Building: collection and formatting of all the data elements of an event into a single unit
 - normally last step before high-level trigger or storage
 - can be implemented on buses, can use custom interconnects, can be based on (Ethernet) **network**
- Network-based EB is choice of all LHC experiments and a case study for networking in DAQ

Network switch: crossbar

- Each input port can potentially be connected to each output port
- At any given time, only one input port can be connected to a given output port
- Different output ports can be reached concurrently by different input ports

Network switch: crossbar

→ Ideal situation → all inputs send data to different outputs

No interference (Congestion)

All input ports send data concurrently

Crossbar switch: event building

- → EB workload implies converging data flow
 - <u>all inputs want to send to same</u> <u>destination</u> **at the same time**
- → "Head of line blocking"
 - congestion

Congestion

→ Well know phenomena ..

- in Geneva and other cities
- Differently from road traffic, Ethernet HW is allow to "drop" packets
 - Higher level protocols have to take care of resending
 - Possibly important performance impacts

Queuing

→Adding input and output FIFO dramatically improve the EB pattern handling

→EB workload anyway problematic

- FIFO size is limited, variable data size
- limited internal switching speed

LHC experiments

Multi-level trigger systems

- Sometime impossible to take a proper decision in a single place
 - too long decision time
 - too far
 - too many inputs
- Distribute the decision burden in a hierarchical structure
 - usually $\tau_{N+1} \gg \tau_N$, $f_{N+1} \ll f_N$
- At the DAQ level, proper buffering must be provided for every trigger level
 - absorb latency
 - de-randomize

LHC DAQ phase-space

Trigger & DAQ Challenges at the LHC

→LHC experiments have O(10⁷) channels operating at 40 MHz (25 ns) \rightarrow 40 TB/s

➔In addition, interesting phenomena are extremely rare

$$\sigma_H / \sigma_{Tot} \sim O(10^{-13})$$

→ Events are complex

- significant number of overlapping collisions (pile-up μ)
- →Experiments are large (O(10 m))

LHC L1 Trigger and FE electronics

- → Particle time of flight >> 25 ns
- →Cable delays >> 25 ns

Dedicated synchronization, timing and signal distribution facilities

 \rightarrow Typical L1 decision latency is O(µs)

dominated by signal propagation in cables

Digital/analog <u>custom</u> front-end pipelines store information during L1 trigger decision

LHC: After L1?

Custom hardware L1 trigger and front-end electronics followed by networkbased High-Level Trigger farm(s)

· commercially available HW organized in a farm

- events are independent

- Connection between custom section and the networkbased one achieved via dedicated HW and point-topoint connectivity
 - · electrical or optical, standard or custom

Network based

Read-out links at the LHC (in Run 1)

		Flow Control
SLINK	Optical: 160 MB/s ≈ 1600 Links Receiver card interfaces to PC.	Yes
SLINK	LVDS: 400 MB/s (max. 15m) ≈ 500 links (FE on average: 200 MB/s to readout buffer) Receiver card interfaces to commercial NIC (Network Interface Card)	yes
DDL	Optical 200 MB/s \approx 500 links Half duplex: Controls FE (commands, Pedestals,Calibration data) Receiver card interfaces to PC	yes
TELL-1 & GbE	Copper quad GbE Link≈ 400 linksProtocol: IPv4 (direct connection to GbE switch)LinkForms "Multi Event Fragments"Implements readout buffer	no

ATLAS HLT Farm

Electronics, Trigger and Data Acquisition - W.Vandelli

ALICE

custom hardware PC

network switch

ATLAS

custom hardware PC

network switch

LHCb

custom hardware PC

network switch

— Timing and Fast Control Signals

— Control and Monitoring data

Long Shutdown 1: TDAQ Perspective

 2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023		2030
F	hase (Run 1	0	LS	61		Run 2		LS2	F	^{>} hase Run 3	l	LS	3	Pha Ri	ase II un 4
(Prepare Run 2)						(Prepare Phase I)			(Prepare Phase II)						
Consolidation					Ultimate luminosity			HL-LHC							
$\sqrt{s} = 13 \sim 14 \text{ TeV}$															
25 ns bunch spacing															
L _{inst} 1	x10 ³⁴	cm ⁻² s	-1		L _{inst} 2	2-3 x1(0 ³⁴ cm	⁻² S ⁻¹	L _{inst} 5	x10 ³⁴	cm ⁻² s	-1			
$\mu \sim 27$					μ ~ 55–81				$\mu \sim 140$ [with levelling]						
 ∫L _{inst} ∕	~ 50 f	b ⁻¹			∫ L _{inst}	> 350) fb⁻¹		L _{inst} 6	-7 x10) ³⁴ cm ⁻	² S ⁻¹			
									μ~19	92 [wit	thout I	evellin	g]		
									∫L _{inst} ~ 3000 fb ⁻¹						

→ LHC data-acquisition system backbones installed ~2007

- during Run 1 \rightarrow stability, efficiency, performance reach and optimization

→ LS1 was occasion to

- upgrade core systems and review architectures
- introduce new technologies, retire obsolete ones
- · follow changes on the detector side
- prepare for challenges of Run2 (and Run3)

Long Shutdown 1: TDAQ Perspective

→ LHC data-acquisition system backbones installed ~2007

- during Run 1 \rightarrow stability, efficiency, performance reach and optimization

→ LS1 was occasion to

- upgrade core systems and review architectures
- introduce new technologies, retire obsolete ones
- · follow changes on the detector side
- prepare for challenges of Run2 (and Run3)

Run 2: Challenges

➔ Increased pile-up

- larger data size \rightarrow bandwidth and storage
- more complex events \rightarrow increased computing needs, trigger efficiency and rejection power

(Some) Run 2 updates

Merge L2 and L3 into a single HLT farm

- preserve Region of Interest, but diluted the farm separation and fragmentation
- increased flexibly, computing power efficiency

 all network technologies replaced

HLT

- Myrinet \rightarrow Ethernet
- Ethernet \rightarrow Infiniband
- file-based event distribution in the farm
 - achieve full decoupling between DAQ and HLT

HLT

Looking forward to LS2 and beyond

DAQ@LHC Workshop

On the long term, all experiments looking forward to significant increase in L1 trigger rate and bandwidth. ALICE and LHCb will pioneer this path during LS2

- → First level trigger for Pb-Pb interactions 500 Hz → 50 kHz
- →22 MB/event
 - 1 TB/s readout \rightarrow 500 PB/month
- →Data volume reduction
 - on-line full reconstruction
 - discard raw-data
- →Combined DAQ/HLT/offline farm
 - COTS, FPGA and GPGPU

→ 1 MHz → 40 MHz readout and event building → trigger-less

- trigger support for staged computing power deployment
- →100 kB/event
 - on-detector zero suppression \rightarrow radhard FPGA
 - 4 TB/s event-building

Almost The End

What I did not talk about ...

Many many topics

- Run Control \rightarrow Steering the DAQ, Finite State Machine
- Configuration \rightarrow Storing, distributing and archiving SW, HW and trigger configuration
- Monitoring \rightarrow The quality of the data, the state of the detector, the functionality of the DAQ

Your chance of hearing about these and much more and learn through practice ...

ISOTDAQ 2016

Sixth edition of the International School of Trigger and Data Acquisition will be held in February 2016 and hosted by Weizmann Institute

http://isotdaq.web.cern.ch/isotdaq/isotdaq/Home.html

The End

W.Vandelli CERN/PH-ADT Wainer.Vandelli@cern.ch

References

→ Lectures and papers from H. Spieler

- http://www-physics.lbl.gov/~spieler/
- ➔ Lecture at ISOTDAQ schools
 - http://isotdaq.web.cern.ch/isotdaq/isotdaq/Home.html
- ➔ Of course, previous Summer Student courses
 - http://indico.cern.ch/scripts/SSLPdisplay.py?stdate=2011-07-04&nbweeks=7
- ➔ DAQ@LHC Workshop
 - http://indico.cern.ch/scripts/SSLPdisplay.py?stdate=2011-07-04&nbweeks=7

W.Vandelli CERN/PH-ADT Wainer.Vandelli@cern.ch