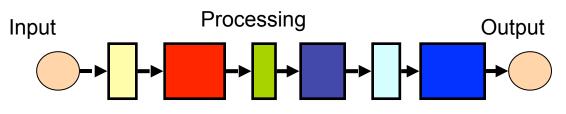
Parameterized Simulation in the FCC framework

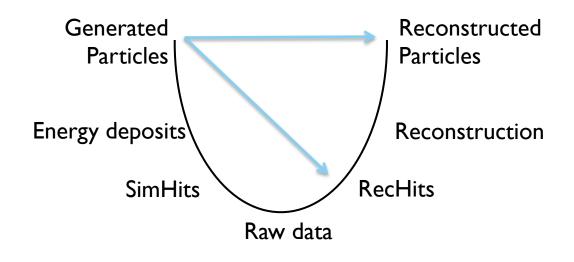
B. Hegner, CERN for the FCC Experiment Software Team

29.4.2015


- Provide robust software to allow physics studies for CDR in 2018
- Support all FCC-ee, -eh, and -hh communities at the same time
 - Requires flexibility for Geometry and Simulation
- Start pragmatically
- As studies progress move to more sophisticated solutions
 - Allow components to be replaced later on
- FCC software effort relies on effort of other people
 - There is a give and take
 - Aim for, but don't blindly force, synergy with other communities

A - TT - two tjets + X, 60 16

- Adapt existing solutions from LHC
 - Gaudi as underlying framework
 - ROOT for I/O
 - Geant4 for simulation
 - C++ **and** Python for user analysis
- Adapt software developments from ILC/CLIC
 - DD4Hep for detector description
- Invest in better fast vs. full sim integration
 - Geant4 fastsim, Atlfast (ATLAS)
- Invest in proper future-proof data model
 - The LHC experiments' ones are over-engineered
 - The ILC/CLIC model (LCIO) was designed before power and memory wall



- Gaudi is an event-independent data processing framework
 - Used by LHCb, ATLAS, and a few smaller experiments
- Based on the concept of a software bus
- Work is split up in interdependent "algorithms"

 Parallelization effort with "GaudiHive" to take advantage of ever increasing hardware parallelization

- FCC Software needs to support the studies of multiple detectors
- At different stages different level of detail required
 - Smearing vs. fast sim vs. full sim

Different levels of detail = Doing short cuts in the full workflow

- FCC Software needs to support the studies of multiple detectors
- At different stages different level of detail required
 - Smearing vs. fast sim vs. full sim
- FCC choices are
 - Delphes (*) and HepSim (**)
 - Fast simulation in Python
 - Integrated fast/full simulation with Geant4
- Should all be accessible from within the same framework
- Analysis code should be as similar as possible for these use cases.

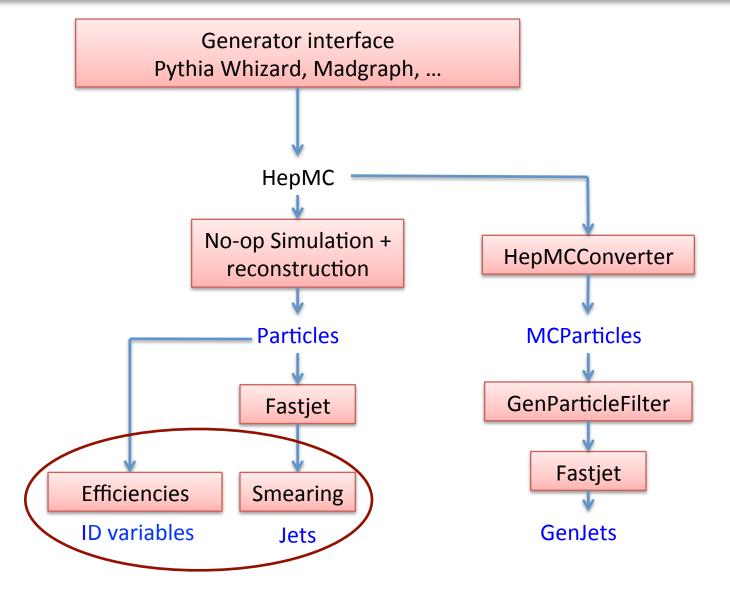
(*) <u>http://delphes.hepforge.org</u>
(**) <u>http://atlaswww.hep.anl.gov/hepsim/</u>

FCCSW and Delphes

Delphes is a standalone package that just works out-of-the-box

• Simple and flexible

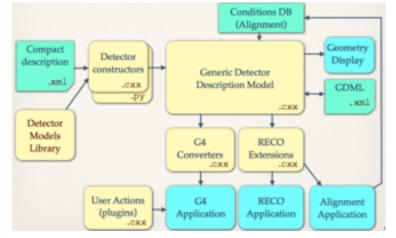
Not foreseen to be integrated into other frameworks and software stacks


• Work on build procedures and interfacing completed

Delphes uses a very specific data model - ExROOTAnalysis

- ExROOTAnalysis was used in CMS as stop-gap solution after problems in computing challenge in '07.
- Not completed step is mapping this data model into the FCC data model
 - FCCSW efforts limited by manpower, not by technology

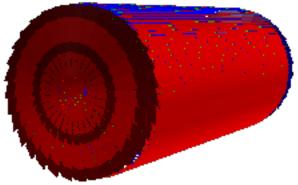
MC level analysis in FCCSW


$H, A \rightarrow \forall \tau \rightarrow t wo \tau jets + X, 60 fb^{'}$

Your chance to contribute w/ smart ideas and code :-)

Detector Description

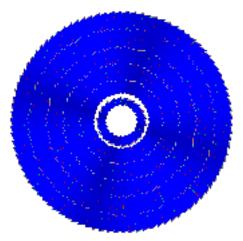
- Detector Description in LHC experiments is a not-well organized environment
- Detectors modeled long ago and expertise largely gone
- Work on upgrade reveals weaknesses
- Heterogeneous setups even within experiments
- ILC/CLIC efforts triggered the project DD4hep (*)
- Covering simulation, display, alignment in a consistent way
- FCC joined these efforts of DD4hep
- Good support by developers!
- Working on first test-detector

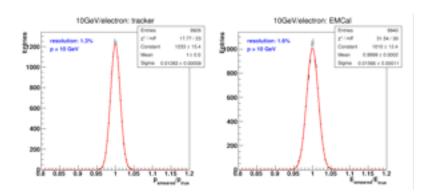

Existing Detector Descriptions

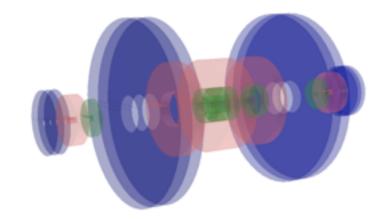
In DD4hep there currently exist a few prototypes FCC-hh could start with

- ILD and CLIC_SiD
- LHeC / FCC-eh detector
- FCC silicon tracker example

Important for FCC-hh would be to define detector hierarchy for people to get started building up sub-detector geometries

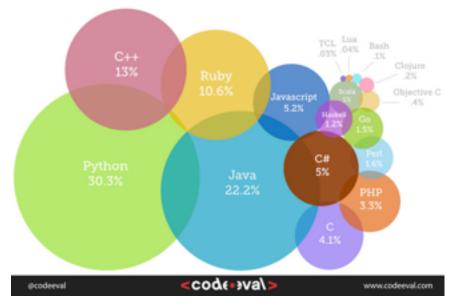

• Which of the concepts in Werner's presentation do we want to tackle first?




- Goal is to have a combined fast and full simulation
 - Decide at the config level where to do what
- (Semi-) automatic extraction of fast simulation parameters from full simulation
 - To be able to do fast-sim for any detector design

 Though not re-inventing the wheel, we are heavily re-designing it

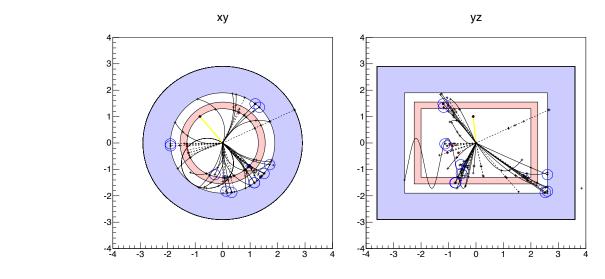
- $H, A \rightarrow \forall \tau \rightarrow two \tau jets + X, 60 fb^{-1}$
- First development phase was focussed on producing a demonstrator
 - Using expertise from ATLAS and Geant4 developers
 - Chosen approach worked out nicely
 - Results now being integrated into Geant4 and Gaudi



nota bene: main aim is faster simulation after first detector description is there

- Analysis should be easy and powerful
- Lesson from LHC experiments and ILC/CLIC
 - If setup is too complex, physicists stop using common software and create their own mini-frameworks
- Physicists will join from different experiments and we need to make the transition as easy as possible
- Need to allow multiple paradigms to do analysis
 - C++ and Python

Analysis in Python


 $H, A \rightarrow \forall \tau \rightarrow two \tau jets + X, 60 fb''$

Most Popular Coding Languages of 2014

- Very large user base
- Super easy to learn
- Light & short code
- Good performance
- usually wraps C or C++ modules
- « Batteries included »
- massive and easy-to-use standard library
- Dynamic typing
- good for multichannel analyses
- code highly reusable
- Dynamic object modification
- Can attach new attributes (or methods) to an existing object
- Productivity x 5-10 w/r C++
- A lot of fun!
- Supporting this with the heppy package originating from CMS

- Fast simulation for physics studies and detector design studies
 - Written in Python it allows quick turn-around
- Uses the same data model as the C++ framework
 - Lowers the bar when moving to production code

More details tomorrow:

https://indico.cern.ch/event/390497/

- Established common FCC experiment software project
- Multiple approaches to simulation
- First phase of pick & chose is finished
- Integrated fast/full sim design validated
- C++ and Python based analysis environment provided

 All being presented here is being discussed / designed in the FCC weekly software meeting:

https://indico.cern.ch/category/5666/

Volunteers needed!

$H, A \rightarrow \forall \tau \rightarrow two \tau jets + X, 60.16$

- Framework
 - Core event data model, Gaudi integration, Software stack
- Generators
 - Integration
- Simulation infrastructure
 - Geant4 (fast & full)
 - Delphes integration
- Reconstruction
- Analysis tools
 - python & C++ framework
- Validation
 - testing and performance
- Computing
 - sample production and management

Bernet, Hegner

Pilicer, People needed

Carminati, Dell'aqua, Hrdinka, Salzburger, Zaborowska

De Gruttola, Hegner

People needed

Many thanks to our hard working team!

Bernet

Hegner, People needed

People needed

