# Observation of top-quark production in the forward region with $$\rm LHCb$$

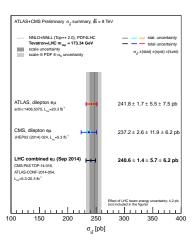
together with (b, c)-jet tagging and W + (b, c) jets production measurements @7 and 8 TeV

Victor Coco, on behalf of the LHCb Collaboration

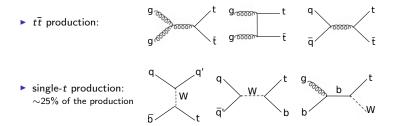
CERN

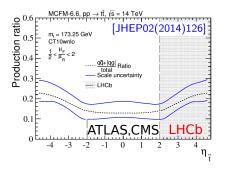
May 26, 2015

LHC Seminar




## Top quark production studies in pp collisions


- Top quark production extensively studied in Runl of the LHC.
  - Results from both ATLAS and CMS in the central region.
  - Inclusive and differential  $t\bar{t}$  and single-t production.
  - ▶ Properties of  $t\bar{t}$  events (jet veto, jet multiplicites,  $t\bar{t}$ +b production , $t\bar{t}$ +bosons...).


- Considerable effort from theory side:
  - ME+PS at NLO allow predictions for complex observables.
  - Full NNLO+NNLL for inclusive σ<sub>tt</sub> and σ<sub>t</sub>.
  - Approximate NNLO differential prediction.
  - Full NNLO differential predictions to come.
  - ▶ [Proc. of TOP2014]

## Entering precision measurement modes in the central region



## Top quark production in pp collisions



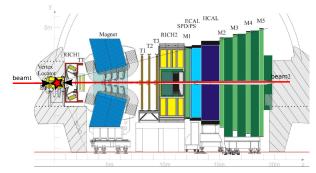



Motivation for studies in the forward region:

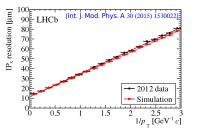
- test for the differential predictions.
- reduced g-initiated production.
- probe different momentum fraction of the proton compared to central region.

## Impact of $t\bar{t}$ production measurement on the gluon PDFs

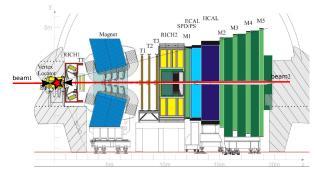
- Large uncertainty on the high-x gluon PDFs.
- ATLAS/CMS  $t\bar{t}$  measurements constraint the high-x gluon PDF [arXiv:1303.7215]
- $t\bar{t}$  production in the forward region involve higher-x / lower-x gluon.
- Study in LHCb acceptance [JHEP02(2014)126]




4 / 58


## Outline

- Experimental setup and top signature @ LHCb.
- ▶ (*b*, *c*)-jet tagging algorithm, [LHCb-PAPER-2015-021]
- ▶ *W* + (*b*, *c*)-jet production measurements, [LHCb-PAPER-2015-021]:
  - ▶ µ + (b, c)-jet final state.
  - Most of the measurement techniques are similar to the one used in top study
  - Top is a background there.
- Observation of top production in the forward region and  $\sigma(top)$  measurement:
  - ▶ µ + b-jet final state.
  - ▶ W + b-jet is a background there.
  - Preliminary


#### LHCb detector 2008 JINST 3 S08005



- Designed for CP violation studies in b and c hadrons decays and their rare decays.
- Fully instrumented forward  $2 < \eta < 4.5$
- Excellent tracking and vertexing capabilities.



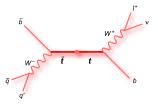
#### LHCb detector 2008 JINST 3 S08005



- During Run I, pp collisions:
  - 1 fb<sup>-1</sup> @  $\sqrt{s} = 7$  TeV, • 2 fb<sup>-1</sup> @  $\sqrt{s} = 8$  TeV.
- Runll: Expect ~ 5 fb<sup>-1</sup> @  $\sqrt{s} = 13$  TeV.
- Data taking with luminosity levelling

 $\rightarrow$  stable average pile-up  $\sim 2$ 




## $t\bar{t}$ final states in LHCb

- Can hardly get the full final state in LHCb.
- ▶ [LHCb-PUB-2013-009]  $p_T$   $_{\ell,j} > 20$  GeV,  $p_T$   $_b > 60$  GeV and  $2 < \eta_{\ell,b,j} < 4.5$

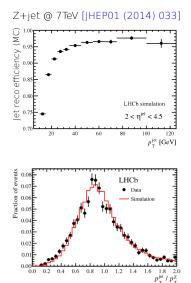
| $d\sigma({ m fb})$  |           | $7 { m TeV}$ |       | 8 TeV |     |       |    |     |       |  |
|---------------------|-----------|--------------|-------|-------|-----|-------|----|-----|-------|--|
| ٩<br>۲              | lb        | 285          | $\pm$ | 52    | 504 | $\pm$ | 94 |     |       |  |
| n L                 | lbj       | 97           | $\pm$ | 21    | 198 | $\pm$ | 35 |     | ds    |  |
| cay products in LHC | lbb       | 32           | $\pm$ | 6     | 65  | $\pm$ | 12 |     | Yield |  |
| npo                 | lbbj      | 10           | $\pm$ | 2     | 26  | $\pm$ | 4  | В   |       |  |
| y pr                | $l^+l^-$  | 44           | $\pm$ | 9     | 79  | $\pm$ | 15 | S/B |       |  |
| Jeca                | $l^+l^-b$ | 19           | $\pm$ | 4     | 39  | $\pm$ | 8  |     |       |  |

- Complex final state have less background but hardly accessible @ Run I
- $\mu$  + b more suited for Run I measurement but large background.
- [PRL107(2011)082003] showed that  $\mu + b$  final states can be used for  $t\bar{t}$  measurement.

 $\rightarrow$  need hard-p\_T(b) and very low mis-tag rate of light jets



## $\mu$ and jets @ LHCb


#### Muons

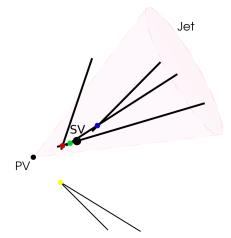
(p\_T > 20 GeV,  $2 < \eta < 4.5$ )

- Efficiencies from data, [LHCB-PAPER-2015-001].
- ▶ Trigger: 80 ± 0.6%
- ▶ Tracking: 90 ± 0.6%
- Identification:  $99 \pm 0.3\%$

#### Jets

- ParticleFlow approach:
  - Charge particles from tracking.
  - Neutrals from calorimetry.
- Anti- $k_T$  with R = 0.5.
- Jet Energy Scale:
  - corrections from MC (factor 0.9 to 1.1)
  - Validated on data, JES data vs. MC difference < 5%</li>
- Jet Energy Resolution:
  - $\sim 15-20\%$  for  $p_T \in [10,100~{
    m GeV}]$
  - Same ball-park than GPD for low-p<sub>T</sub>.
  - Studied in Z + jet and b-enriched dataset.




## Outline

- Experimental setup and top signature @ LHCb.
- ▶ (*b*, *c*)-jet tagging algorithm, [LHCb-PAPER-2015-021]
- ► W + (b, c)-jet production measurements
- Observation of top production in the forward region and  $\sigma(top)$  measurement

## Secondary vertex tagger

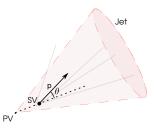
Inclusive vertexing

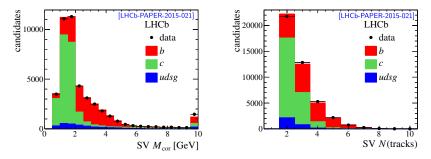
- Tracks consistent with B,D decays.
- Inclusive 2-body vertexing.
- Merge into n-body.
- Quality requirements at every steps.



light jet mistag rate well below 1%

for b tag efficiency  $\sim 65\%$ , c tag efficiency  $\sim 25\%$ .

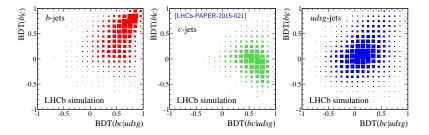

## Secondary vertex tagger


Further discrimination

- Discrimination power from variables relating to:
  - SV displacement wrt. PV,
  - SV kinematic properties,
  - SV charge and multiplicity,
  - jet properties,

• 
$$M_{cor}(SV) = \sqrt{M^2 + p^2 sin^2\theta} + psin\theta.$$
  
 $\rightarrow$  Good  $c$ -jet discrimination

 $\rightarrow$  Good *b*-jet discrimination

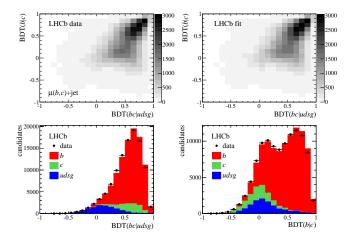





Victor Coco, on behalf of the LHCb Collaboration Observation of top-quark production in the forward region with LHCb



- Two BDT, based on 10 discriminating variables, are trained:
  - BDT<sub>bc|udsg</sub> optimised for heavy flavour versus light discrimination.
  - BDT<sub>b|c</sub> optimised for b versus c discrimination.

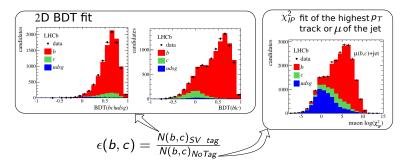



- Enrichement in a b or c-jets can be obtained from cuts on the BDT distributions.
- Flavour content of a given jet sample can be obtained from 2D fit of the BDT distributions.

### Example of 2D fit of the BDT distributions

▶ In a sample enriched in (*b*, *c*)−jets.

(requires a non prompt high- $p_T \mu$  with  $\Delta R(j, \mu) > 2.5$ )




#### Alternative fit with SV-only based variables (*M<sub>cor</sub>*, *N<sub>trk</sub>*) gives 1 – 2% difference on the flavour fractions

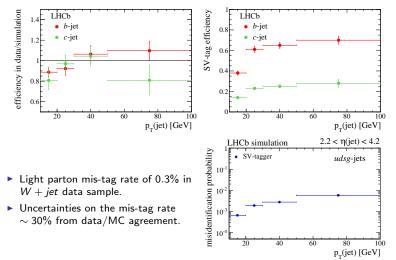
Victor Coco, on behalf of the LHCb Collaboration Observation of top-quark production in the forward region with LHCb May 26, 2015 13 / 58

## Efficiencies from data

Strategy



- Combined fit on 3 samples with various flavour content.
- Event tag with  $\Delta \phi$  (event tag, probe jet) > 2.5:
  - ▶ Fully reconstructed B or D hardons,  $\mu$  with  $\chi^2_{IP} > 16$
- Repeated on two categories of "probe jets":
  - One track with p<sub>T</sub>(track)/p<sub>T</sub>(j) > 0.1
  - One  $\mu$  with  $p_T(track)/p_T(j) > 0.1$
- Allow to vary the source of uncertainties on  $N(b, c)_{NoTag}$ .




## Efficiencies from data

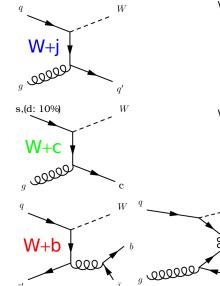
Results

#### [LHCb-PAPER-2015-021]

- Result used as a scaling factor to apply to MC efficiencies.
- Uncertainty of 10% on  $\epsilon_{MC \ corrected}(b, c)$



## Outline


• Experimental setup and top signature @ LHCb.

- ► (*b*, *c*)-jet tagging algorithm.
- W + (b, c)-jet production measurements, [LHCb-PAPER-2015-021]:
  - $\mu + (b, c)$ -jet final state.
  - Most of the measurement techniques are similar to the one used in top study
  - Top is a background there.

• Observation of top production in the forward region and  $\sigma(top)$  measurement

## Motivations

 $\bar{q}'$ 



W+c

- LO production involve s-quark PDFs
- $Q \sim 100~GeV$  and x down to  $10^{-5}$
- Existing constraints based on DIS with Q ~ 1 GeV and x ~ O(0.1).
- At higher Q, measurement in the central region at TeVatron and LHC.

W+b

W

- Main production process sensitive to probability of gluon splitting in bb.
- LO production in 5FS from intrinsic b quark content of the proton.

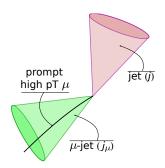
in 5FS

W

h

## Measurement of W + (b, c)-jet ratios and asymmetries.

- $W \rightarrow \mu \nu$  final state.
- Jets tagged with the SV-tagger.



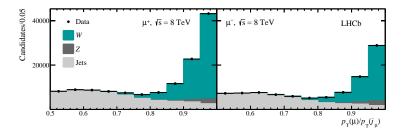

$$p_T(\mu) > 20 \ GeV, \ 2.0 < \eta_\mu < 4.5$$
  
 $p_T(j) > 20 \ GeV, \ 2.2 < \eta_j < 4.2$   
 $\Delta R(\mu, j) > 0.5$   
 $p_T(\mu + j) > 20 \ GeV$ 

#### Selection:

- Prompt µ selection as in [JHEP12(2014)079].
- Events with 2 µ vetoed or classified as Z+jet.
- ▶ "j" is the highest-p<sub>T</sub> jet.
- $\mu$  candidate used in the jet reconstruction.
- Isolation defined as  $p_T(\mu)/p_T(j_\mu)$ .
- $\nu$  missed  $\rightarrow p_T$ -unbalance.
- ▶  $p_T(j_\mu + j) > 20 \text{ GeV}$ .



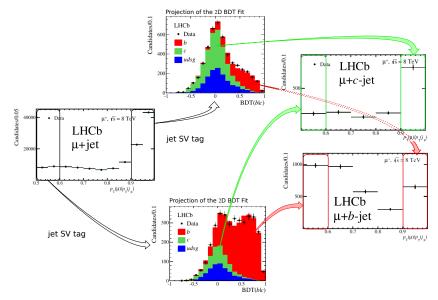



Victor Coco, on behalf of the LHCb Collaboration Observation of top-quark production in the forward region with LHCb

May 26, 2015 18 / 58

#### W + jet yields Fit of the isolation in $\mu$ +jet sample

#### [LHCb-PAPER-2015-021]


- b, c and light jets templates from data.
- ▶ Z+jet,W+jet template from MC corrected for data/MC in  $Z[\mu\mu]$ +jet.
- Z+jet yields fixed from  $Z[\mu\mu]$ +jet.



• Contamination from top and  $Z \rightarrow \tau \tau$  of  $\sim$  5 per mille.

## W + c-tag and W + b-tag yields

Building the  $\mu$  + c-jet and  $\mu$  + b-jet isolation distributions



Victor Coco, on behalf of the LHCb Collaboration Observation of top-quark production in the forward region with LHCb May 26, 2015 20 / 58

## W + c-tag and W + b-tag yields

Fit of the isolation in  $\mu$  + c-jet and  $\mu$  + b-jet samples

#### Candidates/0.1 $\mu^-$ , fs = 8 TeVLHCb $\mu^+$ , $\sqrt{s} = 8 \text{ TeV}$ Data $\mu + c$ -jet 50 Jets 0.6 0.9 $p_{T}(\mu)/p_{T}(j_{\mu})$ Candidates/0.1 $\mu^+$ , $\sqrt{s} = 8 \text{ TeV}$ $\mu$ , s = 8 TeVLHCb Data µ+b-jet Jets 50 0.6 0.7 0.8 0.9 0.6 $p_{T}(\mu)/p_{T}(j_{\mu})$

Same procedure than for the  $\mu$ +jet sample.

- W + c-tag includes contamination from  $Z \rightarrow \tau \tau$  of  $\mathcal{O}(1\%)$ .
- W + b-tag includes contamination from top of  $\mathcal{O}(30 40\%)$ .

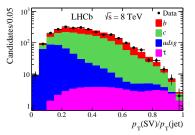
Victor Coco, on behalf of the LHCb Collaboration Observation of top-quark production in the forward region with LHCb

[LHCb-PAPER-2015-021]

### Yields summary

[LHCb-PAPER-2015-021]

|                 | 7 7           | FeV           | 8 TeV          |               |  |
|-----------------|---------------|---------------|----------------|---------------|--|
| Mode            | $\mu^+$       | $\mu^-$       | $\mu^+$        | $\mu^-$       |  |
| $Z[\mu\mu]+jet$ | 2364          | 2357          | 6680           | 6633          |  |
| W+jet           | $27400\pm500$ | $17500\pm400$ | $70700\pm1100$ | $44800\pm800$ |  |
| W + b-tag       | $160\pm31$    | $51\pm27$     | $400\pm43$     | $236\pm45$    |  |
| W + c-tag       | $295\pm36$    | $338\pm31$    | $795\pm56$     | $802\pm55$    |  |


#### Next steps

- ► Z+jet in the fid. volume from  $Z[\mu\mu]$ +jet in data and  $\frac{N(Z[\mu(\mu)])}{N(Z[\mu\mu])}$  from MC.
- W + (b, c)-jet from W + (b, c)-tag and  $\epsilon_{(b,c)-tag}$
- W+jet,W + (b, c)-jet corrected for backgrounds.
- Charge asymmetry:  $A(Wq) = \frac{\sigma(W^+q) \sigma(W^-q)}{\sigma(W^+q) + \sigma(W^-q)}$ .
- Obtained from  $\mu + (b, c)$  yields in  $p_T(\mu)/p_T(j_\mu) > 0.9$ .
- Most backgrounds are charge symmetric (only introduce dilution)  $\rightarrow \mathcal{A} \sim rac{\mathcal{A}_{raw}}{\rho_{wirty}}$
- Small correction for top background A in A(Wb)

### Background estimations

 $Z \to \tau \tau$ 

- h-decay of  $\tau$  produces "c-like" SV.
- Contributes to W + c-jet yields.
- Extracted from  $p_T(SV)/p_T(j)$  fits.
- 3% uncertainty on the σ(Wc)/σ(Wj) ratio



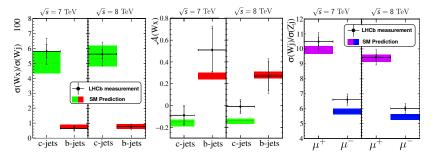
#### Тор

- Contributes to W + b-jet yields.
- Extracted from a reduced fiducial region (see later).
- ▶ 13% uncertainty on the  $\sigma(Wb)/\sigma(Wj)$  ratio

 $W \to \tau \to \mu$ 

- Only relevant for σ(Wj)/σ(Zj).
- Scaling factor obtained in simulation.
- ▶ 1% uncertainty on the  $\sigma(Wj)/\sigma(Zj)$  ratio.

## Systematic uncertainties


#### [LHCb-PAPER-2015-021]

- Most of the uncertainties cancel in the ratio.
- $\blacktriangleright$   ${\cal A}$  uncertainties due to charge asymmetric effects uncertainties.

| $\frac{\sigma(Wb)}{\sigma(Wj)}$ | $\frac{\sigma(Wc)}{\sigma(Wj)}$                          | $\frac{\sigma(Wj)}{\sigma(Zj)}$                                                                                                                                                                                                                                                                                   | $\mathcal{A}(Wb)$                                    | $\mathcal{A}(Wc)$                                     |
|---------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| _                               | _                                                        | 2%                                                                                                                                                                                                                                                                                                                | _                                                    | _                                                     |
| 1%                              | 1%                                                       | 1%                                                                                                                                                                                                                                                                                                                | _                                                    | -                                                     |
| 2%                              | 2%                                                       | _                                                                                                                                                                                                                                                                                                                 | _                                                    | _                                                     |
| 2%                              | 2%                                                       | 1%                                                                                                                                                                                                                                                                                                                | 0.02                                                 | 0.02                                                  |
| 10%                             | 10%                                                      |                                                                                                                                                                                                                                                                                                                   | _                                                    | _                                                     |
| 5%                              | 5%                                                       |                                                                                                                                                                                                                                                                                                                   | 0.02                                                 | 0.02                                                  |
| 10%                             | 5%                                                       | 4%                                                                                                                                                                                                                                                                                                                | 0.08                                                 | 0.03                                                  |
| 13%                             | _                                                        | _                                                                                                                                                                                                                                                                                                                 | 0.02                                                 |                                                       |
| —                               | 3%                                                       | —                                                                                                                                                                                                                                                                                                                 | _                                                    | _                                                     |
| _                               | _                                                        | -                                                                                                                                                                                                                                                                                                                 | _                                                    | _                                                     |
| -                               | -                                                        | 1%                                                                                                                                                                                                                                                                                                                | -                                                    | -                                                     |
| 20%                             | 13%                                                      | 5%                                                                                                                                                                                                                                                                                                                | 0.09                                                 | 0.04                                                  |
|                                 | -<br>1%<br>2%<br>2%<br>10%<br>5%<br>10%<br>13%<br>-<br>- | $\begin{array}{c ccc} \hline \sigma(Wj) & \hline \sigma(Wj) \\ \hline & \hline & \hline \\ & \hline \\ & 1\% & 1\% \\ 2\% & 2\% \\ 2\% & 2\% \\ 10\% & 10\% \\ 5\% & 5\% \\ 10\% & 5\% \\ 10\% & 5\% \\ 13\% & - \\ \hline & - & 3\% \\ \hline & - & - \\ \hline & - & - \\ \hline & - & - \\ \hline \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

W + (b, c)-jet ratios and asymmetries results [LHCb-PAPER-2015-021]

Predictions @NLO: MCFM[PRD62(00)114012] and CT10 PDF set,[PRD82(10)074024].



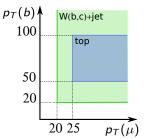
- $|\mathcal{A}(Wc)|$  is  $2\sigma$  lower than predictions using CT10 PDFs.
- Could point to asymmetric (s,s) PDFs.
- Data do not support large contribution from intrinsic b-quark in the proton:
  - $\rightarrow$  Insufficient precision to rule out extra contribution at the  $\mathcal{O}(10\%)$  level.
- ▶ If we measure *W* + *b* and top together:

 $\frac{\sigma(Wb\pm top)}{\sigma(Wj)}_{7 \text{ TeV}} = 1.17 \pm 0.13 \pm 0.18\% \text{ (NLO prediction} = 1.23 \pm 0.24\%)$   $\frac{\sigma(Wb\pm top)}{\sigma(Wj)}_{8 \text{ TeV}} = 1.29 \pm 0.08 \pm 0.19\% \text{ (NLO prediction} = 1.38 \pm 0.26\%)$ 

Victor Coco, on behalf of the LHCb Collaboration Observation of top-quark production in the forward region with LHCb May 26, 2015 25 / 58

## Outline

• Experimental setup and top signature @ LHCb.


- ► (b, c)-jet tagging algorithm.
- ▶ *W* + (*b*, *c*)-jet production measurements.

• Observation of top production in the forward region and  $\sigma(top)$  measurement:

- $\mu + b$ -jet final state.
- W + b-jet is a background there.

## Selection and strategy

- Combined measurement of the single-t and  $t\bar{t}$  production in the  $\mu + b$  channel.
- $t\bar{t}$  accounts for 3/4 of the top production.
- Tightened fiducial region to enhance top contribution.
  - *p*<sub>T</sub>(µ) > 25 GeV.
     50 < *p*<sub>T</sub>(*b*) < 100 GeV</li>
- Reduces the uncertainty associated to QCD iets.
- Improves  $S/\sqrt{B}$  at large  $p_T(\mu + b)$ .
- Identical selection to W + (b, c) otherwise.



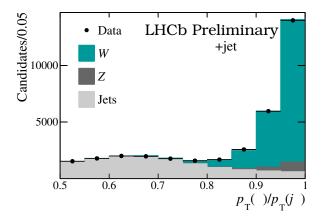
- $p_T(\mu + b)$  provides discrimination between top and W + b-jets.
- $\mathcal{A}(Wb) \sim 1/3$  while  $\mathcal{A}(top) \sim 0.1$ , mainly from single-t.
- Look for an excess of  $\mu + b$  events and deviation of A as function of  $p_T(\mu + b)$ .
- Needs good control on W + b-jets predictions.

## SM predictions

- NLO predictions from MCFM [JPG42(2015)1,015005] in the 4FS and CT10 PDF set [PRD82(2010)074024].
- ▶ NLO PowhegBox [JHEP01(2012)137] showered with Pythia8 [CPC178(2008)852-867]

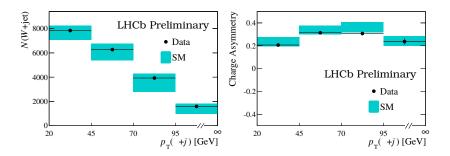
(for consistency check)

- Prediction uncertainties from PDFs,  $\alpha_s$  and scale.
- Integration uncertainties and from  $m_{c,b,t}$  negligible.
- $\alpha_s$  and PDF uncertainties are found to be close to 100% correlated between bins.
- Detector response folded to the prediction:
  - Main contribution from  $\mu$  efficiencies, b-jet  $p_T$  migration, (b,c)-tagging efficiencies.
- $\sigma(Wb)/\sigma(Wj)$  theory uncertainties partially cancel in the ratio.
- In the most significant bin of  $p_T(\mu + b)$ :


rel. error[ $\sigma(Wb)/\sigma(Wj)$ ] ~  $\frac{1}{3}$  rel. error[ $\sigma(Wb)$ ]

#### Measure W+jets yields to fix the scale of W + b-jets from data

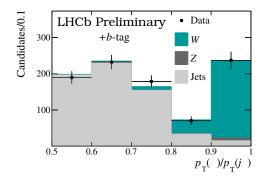
## In situ constraint from W+jet


Isolation fit

- Same procedure than for the previous measurement.
- The isolation fit is performed in 4  $p_T(\mu + j)$  bins [20; 45; 70; 95;  $\infty$ ].
- $\mu^+$  and  $\mu^-$  fitted separately.



## In situ constraint from W+jet

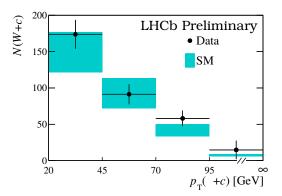

Yields and Asymmetry



- W+jet data consistent with NLO predictions at the  $1\sigma$  level.
- Slightly lower  $\mathcal{A}$ , consistent with slightly higher  $\sigma(W^{-}j)/\sigma(Zj)$ .
- Low uncertainty allows to fix the scale of W(c, b) from W(c, b)/Wj predictions.

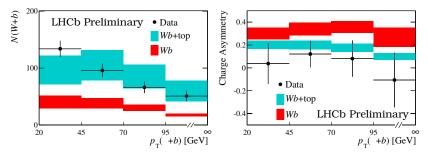
## Isolation fit for $\mu + (b, c)$ -tag

- (b,c)-tagged event yields from fit of the 2D BDT
- W + b-tag and W + ctag yields from  $p_T(\mu)/p_T(j_\mu)$  fit.
- di-jet templates from non-prompt  $\mu$  side bands, reweighted to signal region.




Uncertainties on the W + b yields:

- 5% from the BDT template fit modeling.
- ► 5 10% uncertainty on the yields from the modelling of p<sub>T</sub>(µ)/p<sub>T</sub>(j<sub>µ</sub>) for di-jet templates.


## Validation of the method on W + c-jet

- W + c-jet is free of top contribution.
- Yields are compared to the NLO prediction folded with detector response.



#### Validates the method.

W + b-tag yields and asymmetry

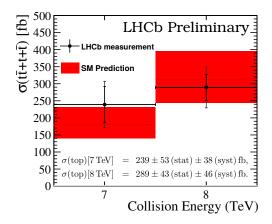


Discrepancy between data and Wb predictions.

- ▶ Good agreement with *Wb* + *top* predictions.
- Binned likelihood fit of N(top) and A(top).
- Systematic uncertainties treated as Gaussian constraints.
- ▶ N(top) and A(top) shapes are fixed. The total yields is allowed to vary.
- Profile likelihood to compare Wb + top and Wb hypotheses

#### 5.4 $\sigma$ observation of top production in the forward region.

## Sytematic uncertainties


For significance evaluation and cross section measurement

| source                                        | uncertainty       |
|-----------------------------------------------|-------------------|
| GEC                                           | 2%                |
| $p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$ templates | 5 – 10%           |
| jet reconstruction                            | 2%                |
| SV-tag BDT templates                          | 5%                |
| b-tag efficiency                              | 10%               |
| trigger & $\mu$ selection                     | $2\%^\dagger$     |
| jet energy                                    | $5\%^{\dagger}$   |
| $W \to \tau \to \mu$                          | $1\%^{\dagger}$   |
| luminosity                                    | $1{-}2\%^\dagger$ |

- ▶ 5 10% difference in yields from purly data based templates for  $p_T(\mu)/p_T(jet)$
- ▶ 5% difference in yields using the alternative fit using  $M_{cor}(SV), N(trk)$ .
- ▶ (b,c)-tagging uncertainty of 10%.
- 5% difference in yields when including non-gaussian effects in the data-driven jet energy smearing factors.

#### Cross section measurements

• The observed excess above Wb prediction is used to measure  $\sigma(t\bar{t} + t + \bar{t})$ .



Cross sections at  $\sqrt{s} = 7,8$  TeVare consistant with NLO SM predictions.

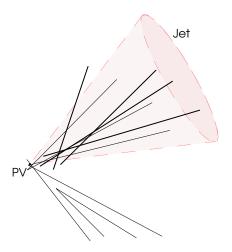
### Outlook

- ▶ Developed efficient (b, c)-jet tagging method with low light-jet mistag rate.
- W + (b, c)-jets production ratios and A in good agreement with NLO predictions.
- Observed top production in the forward region.
- ▶ Combined  $t\bar{t}$  and single-*t* cross sections at  $\sqrt{s} = 7,8$  TeV in good agreement with NLO predictions.

#### LHCb starting its Top physics program, more to come with RunII

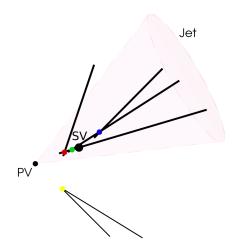
[LHCb-PUB-2013-009]

|                                                        | $d\sigma({ m fb})$ | $8 { m TeV}$ |       |    | 14  TeV |       |     |
|--------------------------------------------------------|--------------------|--------------|-------|----|---------|-------|-----|
| <ul> <li>Factor &gt; 10 increase in yields.</li> </ul> | lb                 | 504          | $\pm$ | 94 | 4366    | $\pm$ | 663 |
| More final states accessible.                          | lbj                | 198          | $\pm$ | 35 | 2335    | $\pm$ | 323 |
| <ul> <li>Differential cross sections.</li> </ul>       | lbb                | 65           | $\pm$ | 12 | 870     | $\pm$ | 116 |
| Separations between tt and single-t.                   | lbbj               | 26           | $\pm$ | 4  | 487     | $\pm$ | 76  |
| Study b—jet properties in t decays.                    | $l^+l^-$           | 79           | $\pm$ | 15 | 635     | $\pm$ | 109 |
|                                                        | $l^+l^-b$          | 39           | $\pm$ | 8  | 417     | $\pm$ | 79  |


#### ... and the first RunII data comes in 3 weeks!

#### BACKUP

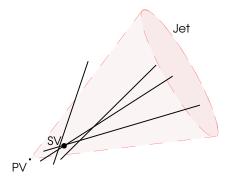
Inclusive vertexing


- Tracks consistent with B,D decays

  - Displaced: χ<sup>2</sup><sub>IP</sub> > 16
     High p<sub>T</sub>: p<sub>T</sub> > 0.5 GeV

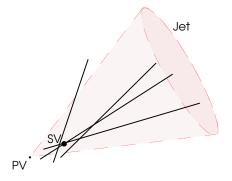


Inclusive vertexing


- Tracks consistent with B,D decays
- Inclusive 2-body vertexing
  - DOCA < 0.2 mm, χ<sup>2</sup><sub>vertex</sub> < 10.</li>
     0.4 < m<sub>vertex</sub> < m<sub>B</sub>.
     ΔR(PV − SV, j) < 0.5.</li>



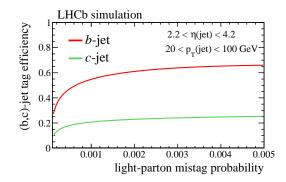
Inclusive vertexing


- Tracks consistent with B,D decays
- Inclusive 2-body vertexing
- Merge into n-body
  - based on shared tracks
  - $p_T > 2 \text{ GeV}, \chi^2_{d_{PV} SV} > 5\sigma.$

  - $d_{PV,SV}/p < 1.5 \ mm/GeV.$  max 1 track with  $\Delta R(tr, j) > 0.5.$



Inclusive vertexing

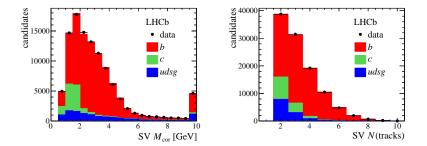

- Tracks consistent with B,D decays
- Inclusive 2-body vertexing
- Merge into n-body



#### $\blacktriangleright$ mistag rate well below 1% for b tag efficiency $\sim 65\%$ , c tag efficiency $\sim 25\%.$

#### Performances in simulation

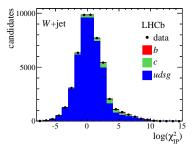
further discrimination with BDTbc vs udsg cut




 Flavour content can be obtained by fitting the 2D BDT distributions but when needed they can be used to cut.

#### Alternative Tagged yields

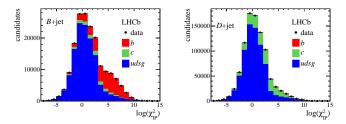
Systematics for BDT shapes modeling


- Alternative fit using SV based only variables
  - N<sub>trk</sub> for b-jet discrimination.
  - *M<sub>cor</sub>(SV*) for c-jet discrimination.
- > 2D fit in each  $(p_T, \eta)$  bins, for each sample.
- Difference with 2D BDT fits used as BDT shapes modeling uncertainties.
- ▶ 1-2% uncertainty on the flavour fraction.



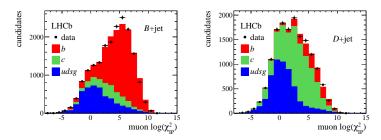


Fit of the  $\chi^2_{IP}$  of the highest  $p_T$  track or  $\mu$  in the jet.


- ► Calibration of the  $\chi^2_{IP}$  from the W+jet sample (light jet dominated)
  - ▶ 95% in MC.
  - $\blacktriangleright~\sigma_{\chi^2_{I\!P}}$  10% worse in data.
  - Take the correction as universal
  - s component source of uncertainties



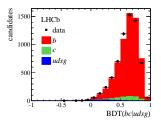
## Untagged yields

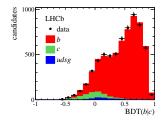

Fitting the  $\chi^2_{IP}$  of the highest- $p_T$  track of the probe jet.

- Requires  $p_T(trk)/p_T(j) > 0.1$  and has low fake probability.
- Pros: Inclusive jet sample (covers 95% of the jets).
- $\blacktriangleright$  Cons: dominated by light parton jets  $\rightarrow$  large uncertainties (10 30%) on the c jets contribution.

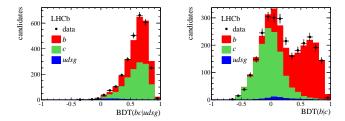


# Untagged yields Fitting the $\chi^2_{IP}$ of the highest- $\mu$ of the probe jet.


- Adds muon identification to the previous sample
- Pros: Large heavy flavour contribution
- Cons: lower statistics ( $\mathcal{O}(10\%)$ ) and only acounts from semi-leptonic decays.



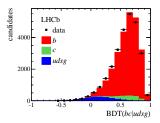

## Tagged yields from 2D BDT fit

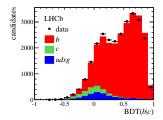

From probe jet with a high- $p_T \mu$ 

▶ In B+jet sample

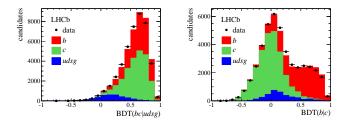





► In D+jet sample

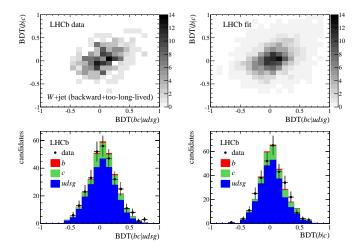



## Tagged yields from 2D BDT fit


From probe jet with a high- $p_T$  track

▶ In B+jet sample






▶ In D+jet sample



#### Light jet misidentification

- ▶ prompt seen as displaced  $\rightarrow$  studied through "backward" SV.
- decays of long-lived strange hadrons and interaction with material  $\rightarrow$  studied through SV with FD/p > 1.5 mm/GeV.
- Studied in W+jet sample to mitigate the same effect from (b,c)-jets.



## Systematic uncertainties on the (b, c)-jet yields

| source                                                | b jets        | c jets              |
|-------------------------------------------------------|---------------|---------------------|
| BDT templates <sup>*</sup>                            | $\approx 2\%$ | $\approx 2\%$       |
| light-parton-jet large IP component*                  | $\approx 5\%$ | $\approx 10 - 30\%$ |
| IP resolution                                         | —             | -                   |
| (hadron-as-muon probability (muon-jet subsample only) | 5%            | 20%                 |
| out-of-jet $(b, c)$ -hadron decay                     | —             | -                   |
| gluon splitting                                       | 1%            | 1%                  |
| number of $pp$ interactions per event                 | -             | _                   |

In particular, in the determination of (b, c)-jet yields in the efficiency denominator:

- $\blacktriangleright~5-30\%$  from the variation of the large-IP component of light parton jets use in the fit of the  $\chi^2_{IP}$  .
- > 5 20% from altering the hadron misID to match the fraction of  $\mu$  in prompt jet in simulation wrt. data.

#### W+jet event selection

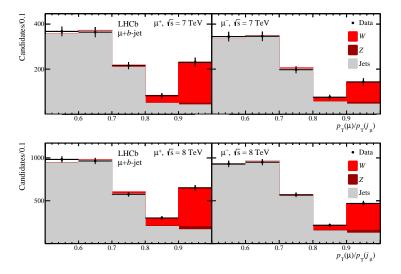
• Highest  $p_T$  jet and highest  $p_T$ , prompt  $\mu$  from same PV.

| $\mu$                       | W + jet                    | Z + jet                     |
|-----------------------------|----------------------------|-----------------------------|
| trigger                     | no OS $\mu$                | $60 < M_{\mu\mu} < 120~GeV$ |
| IP < 0.04  mm, good track   | $p_T(j_\mu + j) > 20 ~GeV$ |                             |
| $(E_{ECAL}+E_{HCAL})/p<4\%$ |                            |                             |

- $p_T(j_\mu + j) > 20 \ GeV \equiv p_T(\mu + j) > 20 \ GeV$  (for Wj to about 1% )
- ▶ Isolation defined by  $p_T(\mu)/p_T(j_\mu)$ , were  $j_\mu$  is the jet clustered with the  $\mu$ .

#### Getting the Wc and Wb components

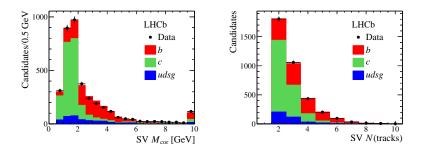
Wc yields extraction


- Isolation templates using the same method than for Wj.
- $Z[\mu(\mu)]c$  from  $Z[\mu\mu]c$  in data, extracted with 2D BDT fit.



### Getting the Wc and Wb components

Wb yields extraction


- Isolation templates using the same method than for Wj.
- $Z[\mu(\mu)]b$  from  $Z[\mu\mu]b$  in data, extracted with 2D BDT fit.



#### Getting the Wc and Wb components

Consistency check

- Alternative fit with  $M_{cor}$ ,  $N_{trk}$  on events with BDT(bc|udsg) > 0.2.
- Yields in 5% agreement with nominal fit.
- $\blacktriangleright$  misidentification probability fo W+light  $\sim 0.3\%$  which agrees with simulation.



## Systematic uncertainties

| Source                                        | $\frac{\sigma(Wb)}{\sigma(Wj)}$ | $\frac{\sigma(Wc)}{\sigma(Wj)}$ | $\frac{\sigma(Wj)}{\sigma(Zj)}$ | $\mathcal{A}(Wb)$ | $\mathcal{A}(Wc)$ |
|-----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|-------------------|
| Muon trigger and selection                    | _                               | _                               | 2%                              | _                 | _                 |
| GEC                                           | 1%                              | 1%                              | 1%                              | _                 | _                 |
| Jet reconstruction                            | 2%                              | 2%                              | _                               | _                 | _                 |
| Jet energy                                    | 2%                              | 2%                              | 1%                              | 0.02              | 0.02              |
| (b, c)-tag efficiency                         | 10%                             | 10%                             |                                 | _                 | -                 |
| SV-tag BDT templates                          | 5%                              | 5%                              |                                 | 0.02              | 0.02              |
| $p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$ templates | 10%                             | 5%                              | 4%                              | 0.08              | 0.03              |
| Top quark                                     | 13%                             | _                               | _                               | 0.02              |                   |
| $Z \to \tau \tau$                             | _                               | 3%                              | _                               | _                 | _                 |
| Other electroweak                             | _                               | —                               | _                               | _                 | _                 |
| $W \to \tau \to \mu$                          | -                               | -                               | 1%                              | -                 | _                 |
| Total                                         | 20%                             | 13%                             | 5%                              | 0.09              | 0.04              |

(b,c)-tagging uncertainty of 10% (ref to paper)

Victor Coco, on behalf of the LHCb Collaboration Observation of top-quark production in the forward region with LHCb May 26, 2015 52 / 58

## Systematic uncertainties

| Source                                        | $\frac{\sigma(Wb)}{\sigma(Wj)}$ | $\frac{\sigma(Wc)}{\sigma(Wj)}$ | $\frac{\sigma(Wj)}{\sigma(Zj)}$ | $\mathcal{A}(Wb)$ | $\mathcal{A}(Wc)$ |
|-----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|-------------------|
| Muon trigger and selection                    | _                               | _                               | 2%                              | _                 | _                 |
| GEC                                           | 1%                              | 1%                              | 1%                              | -                 | -                 |
| Jet reconstruction                            | 2%                              | 2%                              | _                               | _                 | _                 |
| Jet energy                                    | 2%                              | 2%                              | 1%                              | 0.02              | 0.02              |
| (b, c)-tag efficiency                         | 10%                             | 10%                             |                                 | _                 | _                 |
| SV-tag BDT templates                          | 5%                              | 5%                              |                                 | 0.02              | 0.02              |
| $p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$ templates | 10%                             | 5%                              | 4%                              | 0.08              | 0.03              |
| Top quark                                     | 13%                             | -                               | -                               | 0.02              |                   |
| $Z \to \tau \tau$                             | —                               | 3%                              | —                               | _                 | _                 |
| Other electroweak                             | -                               | _                               | -                               | —                 | _                 |
| $W \to \tau \to \mu$                          | -                               | -                               | 1%                              | -                 | -                 |
| Total                                         | 20%                             | 13%                             | 5%                              | 0.09              | 0.04              |

 From alternative template fit (no data/MC correction for Wj, different subtraction of the residual Wj yields in balance sample for QCD jet).

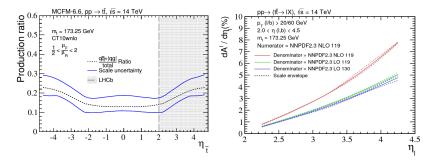
## Systematic uncertainties

| Source                                        | $\frac{\sigma(Wb)}{\sigma(Wj)}$ | $rac{\sigma(Wc)}{\sigma(Wj)}$ | $\frac{\sigma(Wj)}{\sigma(Zj)}$ | $\mathcal{A}(Wb)$ | $\mathcal{A}(Wc)$ |
|-----------------------------------------------|---------------------------------|--------------------------------|---------------------------------|-------------------|-------------------|
| Muon trigger and selection                    | _                               | _                              | 2%                              | _                 | _                 |
| GEC                                           | 1%                              | 1%                             | 1%                              | -                 | _                 |
| Jet reconstruction                            | 2%                              | 2%                             | _                               | _                 | _                 |
| Jet energy                                    | 2%                              | 2%                             | 1%                              | 0.02              | 0.02              |
| (b, c)-tag efficiency                         | 10%                             | 10%                            |                                 | _                 | _                 |
| SV-tag BDT templates                          | 5%                              | 5%                             |                                 | 0.02              | 0.02              |
| $p_{\rm T}(\mu)/p_{\rm T}(j_{\mu})$ templates | 10%                             | 5%                             | 4%                              | 0.08              | 0.03              |
| Top quark                                     | 13%                             | _                              | _                               | 0.02              |                   |
| $Z \rightarrow \tau \tau$                     | —                               | 3%                             | _                               | —                 | -                 |
| Other electroweak                             | -                               | —                              | _                               | —                 | _                 |
| $W \to \tau \to \mu$                          | -                               | -                              | 1%                              | -                 | -                 |
| Total                                         | 20%                             | 13%                            | 5%                              | 0.09              | 0.04              |

▶ see later...

## SM predictions

- NLO prediction from MCFM[JPG(2015)42] with 4FS and CT10 PDF set,[PRD(2010)82].
- NLO PowhegBox[JHEP(2012)1201] showered with Pythia8[CPC(2008)178:852-867] (for consistency check)
- Prediction uncertainties from PDFs,  $\alpha_s$  and scale.
  - Uncertainties from integration negligible wrt. other uncertainties.
  - PDF uncertainties using asymmetric Hessian approach.
  - scale uncertainties using 7-point scale method.
  - $\alpha_s$  uncertainties using envelope of  $\alpha_s(M(Z)) \in [0.117, 0.118, 0.119]$ .
  - Uncertainties from  $m_{c,b,t}$  found to be negligible.


•  $\alpha_s$  and PDF uncertainties are found to be close to 100% correlated between bins.

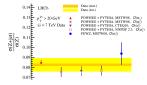
## Outlook and prospect

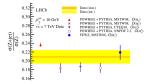
 $t\overline{t}$  Asymmetry

- ▶ Originally proposed in [PRL(2011)107, Kagan, Kamenik, Perez, Stone].
- ► Further work in [LHCb-PUB-2013-009] and [arXiv:1409.8631, Gauld]

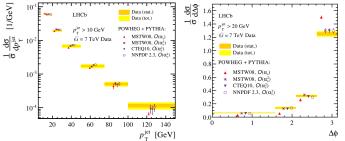
• Considering 
$$\ell b$$
 :  $A_{\ell} = \frac{N(\mu^+ b) - N(\mu^- b)}{N(\mu^+ b) + N(\mu^- b)}$ 




- Background asymmetry need to be well under control.
- A<sup>l</sup><sub>SM</sub> out of reach with Run I (and probably II) dataset (5 10% statistical uncertainty).
- With upgrade statistics (50  $fb^{-1}$ ) with  $A'_{SM} = (1.4 2.0)$  expect 0.3% statistical error.


Victor Coco, on behalf of the LHCb Collaboration Observation of top-quark production in the forward region with LHCb

## Z+jet production in pp at $\sqrt{s} = 7 \ TeV$


Result

- ▶ Predictions from POWHEG+PYTHIA at  $O(\alpha_s)$  and  $O(\alpha_s^2)$  with different PDF sets.
- Predictions from FEWZ at  $O(\alpha_s^2)$  not corrected for hadronisation and underlying event.

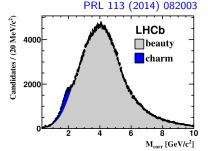




- Not corrected for FSR
- Shapes in good agreement with NLO

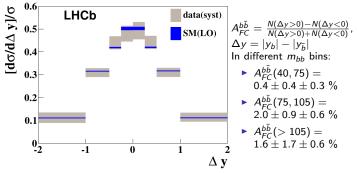


Victor Coco, on behalf of the LHCb Collaboration Observation of top-quark production in the forward region with LHCb


# Central forward $b\bar{b}$ asymmetry $A_{FC}^{b\bar{b}}$

 Depending on new physics flavour structure, asymmetry could shows up in the bottom sector.

```
[arXiv:1108.3301,Kahawala et al.]
```


- At LHC access to the forward central asymmetry.
- Expected to be O(1%) from QCD with an extra O(1%) in the Z mass region.

- ▶ Analysis performed with 1 fb<sup>-1</sup>
- Pairs of b-jets with  $\Delta \phi(bb) > 2.6 \ rad.$
- One of the b-jets charge is tagged with a muon.
- Purity of the charge tagging 70.3 ± 0.3%



#### Central forward $b\bar{b}$ asymmetry $A_{FC}^{b\bar{b}}$ Result with 1 $tb^{-1}$

PRL 113 (2014) 082003



- No deviation from expectation with available statistics.
- Still 2  $fb^{-1}$  of the Run I data to be analysed.
- More efficient b-tagging available now.

#### PHYSICAL REVIEW D 86, 034021 (2012)

#### Next-to-leading order QCD predictions for W + 1 jet and W + 2 jet production with at least one b jet at the 7 TeV LHC

TABLE V. Inclusive event cross sections (in pb) for different PDF sets including PDF +  $\alpha_s$  uncertainties at 68% C.L., determined according to the PDF4LHC NLO prescription [22] (with  $\mu_R = \mu_F = \mu_0$ ).

|                 | $W^+b$ incl. |                | $W^+(bb)$ incl. |      | <sup>-</sup> b incl. | $W^{-}(bb)$ incl. |  |
|-----------------|--------------|----------------|-----------------|------|----------------------|-------------------|--|
|                 | 4FNS         | 5FNS           | 4FNS            | 4FNS | 5FNS                 | 4FNS              |  |
| NNPDF2.1 [19]   | 44.1         | $59.2 \pm 1.7$ | $11.4 \pm 0.3$  | 27.6 | $36.2 \pm 1.0$       | $7.1 \pm 0.2$     |  |
| CTEQ6.6 [18,20] | 42.6         | $56.7 \pm 2.1$ | $10.9 \pm 0.3$  | 26.3 | $34.8 \pm 1.3$       | $6.8 \pm 0.2$     |  |
| MSTW2008 [21]   | 44.2         | $59.8 \pm 1.7$ | $11.5\pm0.3$    | 28.6 | $37.9 \pm 1.0$       | $7.4 \pm 0.2$     |  |