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What We ���
Have Learned	
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The Lepton Mixing Matrix U!
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cij ≡ cos θij���
sij ≡ sin θij	


θ12 ≈ 33°, θ23 ≈ 40-52°,  θ13 ≈ 8-9°  	


Note big mixing! 

But note the crucial role of s13 ≡ sin θ13.	

We know essentially nothing about the phases. Only hints.	


Not very small! 

CP	


The phases violate CP.	
 δ would lead to P(να→ νβ) ≠ P(να→ νβ).   	


Atmospheric	
 Reactor (L ∼ 1 km)	
 Solar	


Does not affect oscillation	
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All mixing angles must be nonzero for CP in oscillation.	


There Is Nothing Special 
About θ13!

For example —	


In the factored form of U, one can put ���
δ next to θ12 instead of θ13.	
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The Meaning of  
the Mixing Matrix Elements!

W	


ℓβ	

νi	


€ 

Uβi

means that when a νi creates a charged lepton, ���
the probability that this charged lepton will be, ���
in particular, of flavor β is —	


€ 

Uβi
2

From the measured mixing angles —	
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The Probabilities of 
Making e, µ, and τ	


= sin2θ13	
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νe [|Uei|2]! νµ[|Uµi|2]! ντ [|Uτi|2]!
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A linear version of the same information is —	
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Δm2
atm!
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ν3 ≅
νµ +ντ

2

{!

Measured by reactor exps. with L ~ 1 km!

From max. atm. mixing, !

From νµ(Up) oscillate�
   but νµ(Down) don’t!

{!
{!

In LMA–MSW, Psol(νe→ νe) �
= νe fraction of ν2!

From max. atm. mixing, ν1& ν2 
each include some (νµ–ντ)/√2 !

From distortion of νe(reactor) 
and νe(solar) spectra!
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The Open ���
Questions	


Looking to the Future 	
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• What is the absolute scale ���
of neutrino mass? 	


• Is the physics behind the masses of neutrinos ���
different from that behind the masses ���

of all other known particles?	

• Are neutrinos their own antiparticles?	


• Is the (mass)2 spectrum like       or       ?	




• Do neutrino interactions ���
violate CP? ���

Is P(να → νβ) ≠ P(να → νβ) ?	
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• Is CP violation involving neutrinos ���
the key to understanding the matter – 
antimatter asymmetry of the universe?	


• Are we descended from heavy neutrinos?	
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• Are there non-weakly-interacting ���
“sterile” neutrinos?	


• Are there more than 3 mass eigenstates?	


• Do neutrinos have Non-Standard-
Model interactions?	


• What can neutrinos and the universe ���
tell us about one another?	
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• Do neutrinos break the rules?	


• Violation of relativity?	

• Violation of CPT invariance?	

• Departures from quantum mechanics?	
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Selected Questions: 
Why They Are 

Interesting, and 
How They May Be 

Answered!
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Is the Origin of Neutrino 
Mass Different?	


The Gran Sasso Lab in Italy!



We will describe what the quantum field theory does, ���
but without equations.	


We start with underlying neutrino states ν and ν ���
that are distinct from each other, like other familiar 

fermions, and are not the mass eigenstates.	


Neutrino Masses Without Field Theory!
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We will have to see what the mass eigenstates are later.	


We can have two types of masses:	




Dirac Mass
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A Dirac mass ���
has the effect:	
 X! ν	


Dirac mass	


or	
 X!

Dirac mass	


ν	
ν	
ν	
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A Majorana mass 
has the effect:	
 X! ν	


Majorana 
mass	


or	
 X!

Majorana 
mass	


Majorana Mass


ν	
 ν	
ν	
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A Majorana mass 
has the effect:	
 X! ν	


Majorana 
mass	


or	
 X!

Majorana 
mass	


Majorana Mass


ν	
 ν	
ν	


Majorana masses mix ν and ν, so they do not 
conserve the Lepton Number L that distinguishes 
leptons from antileptons:	


          L(ν) = L(ℓ–) = –L(ν) = –L(ℓ+) = 1!
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Majorana neutrino masses have a different origin ���
than the quark and charged-lepton masses.	


A Majorana mass for any fermion f causes f       f. 	


Quark and charged-lepton Majorana masses ���
are forbidden by electric charge conservation. 	


But neutrinos are electrically neutral, ���
so they can have Majorana masses.	


Neutrino Majorana masses would make ���
the neutrinos very distinctive, because —	
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The Possible Origins of  
Majorana Masses!

According to the Standard Model —	


Quark and charged lepton masses arise ���
from an interaction with the Higgs field.  	


Dirac neutrino masses would arise in the same way. 	


But Majorana neutrino masses cannot arise as ���
the quark and charged lepton masses do. 	


Majorana neutrino masses are from ���
physics way outside the Standard Model. 	
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A Majorana neutrino mass can arise ���
without interaction with any Higgs field,	


— or through interaction with a Higgs-like field ���
which is not in the Standard Model, ���

and carries a different value of the “weak isospin” ���
quantum number than the Standard Model Higgs,	


— or through interaction with the Standard Model Higgs, 
but not the same kind of interaction ���
as would generate the quark masses. 	


The study of neutrino masses is part of the quest ���
to understand the origins  of all mass.	
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The Mass Eigenstates When 
There Are Majorana Masses!

For any fermion mass eigenstate, e.g. ν1, the action ���
of its mass is —	


X!
Mass	


A Majorana mass 
has the effect:	
 X! ν	


Majorana 
mass	


or	
 X!

Majorana 
mass	


ν	
 ν	
ν	


ν1	
ν1	


Recall that —	


The mass eigenstate is 
sent back into itself.	
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Then the mass eigenstate neutrino ν1 must be —	


ν1 = ν + ν 	


since the Majorana mass term sends this neutrino back 
into itself, as required for any mass eigenstate particle:	


 ν + ν 	
ν + ν 	
 X!

Consequence: The neutrino mass eigenstates ν1, ν2, ν3 
are their own antiparticles. 	


νi = νi	


“Majorana neutrinos” 

(for given helicity)	


,	


Mass	
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The Terminology!
Suppose νi is a mass eigenstate, with �
given helicty h ≡ Spin�Momentum.!

•  νi(h) = νi(h) !Majorana neutrino 
or 

•  νi(h) ≠ νi(h)            Dirac neutrino 

We have just shown that if neutrinos have 
Majorana masses, then the mass eigenstates 

are Majorana neutrinos.	
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SM Interactions Of ���
A Dirac Neutrino	


ν	


ν	


ν	


ν	


makes ℓ–	


makes ℓ+	


Conserved L	

+1	


–1	


We have 4 mass-degenerate states:	


The weak interaction ���
is Left Handed.	
(	
 (	


These states, when Ultra 
Rel., do not interact.	
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SM Interactions Of ���
A Majorana Neutrino	


ν	


ν	


We have only 2 mass-degenerate states:	


makes ℓ–	


makes ℓ+	


An incoming left-handed neutral lepton makes ℓ–. 	


An incoming right-handed neutral lepton makes ℓ+. 	


The weak interactions violate parity.	

(They can tell Left from Right.)	
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To Determine 
Whether ���

Majorana Masses 
Occur in Nature	
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The Promising Approach — Seek !

Neutrinoless Double Beta Decay [0νββ] 	


We are looking for a small Majorana neutrino mass. Thus, 
we will need a lot of parent nuclei (say, one ton of them).	


e–! e–!

Nucl! Nucl’!

Note that 0νββ violates conservation ���
of lepton number L by ΔL = 2. 	




30	


0νββ	
e–	
 e–	


u	
 d	
 d	
 u	


ν	
 ν	


W	
 W	


Whatever physics causes 0νββ, its observation would 
imply the existence of a Majorana mass term:	


(Schechter and Valle)	


ν → ν : A (tiny) Majorana mass term	


	
 	
∴ 0νββ         νi = νi 	
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Can neutrino CP explain 
the matter-antimatter 

asymmetry of the 
universe? 	
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A Cosmic Challenge: 
The Matter-Antimatter Asymmetry!
Cosmologists: Just after the Big Bang, the universe 
contained equal amounts of matter and antimatter. 	


An appealing candidate: Leptogenesis.

(Fukugita, Yanagida)	


Today: The universe contains matter  ���
but essentially no antimatter.	


This change requires that matter and antimatter 
behave differently. Thus, we must have CP. ���

Can we find a CP-violating scenario ���
to explain the change?	
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ν

N!
Very 
heavy 

neutrino	


}

Yanagida; 	

Gell-Mann, Ramond, Slansky; ���

Mohapatra, Senjanovic; 	

Minkowski	


Leptogenesis 
Leptogenesis is an outgrowth of the See-Saw 

Mechanism for generating very small neutrino masses.  	


€ 

Mν ∝1 MN

Familiar 
light 

neutrino	


{
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MN ∼ 10(9 – 14) GeV, so we cannot produce ���
the heavy neutrinos with any existing accelerator, ���

but they would have been made in the hot Big Bang. 	


We assume that, just as there are 3 light neutrinos ���
ν1, ν2, ν3, there are 3 heavy neutrinos N1, N2, N3.	


The N decays modes are —	


and	

  

€ 

ℓα
−

€ 

H+

€ 

yαi

€ 

Ni

€ 

H0

€ 

να

€ 

yαi

€ 

Ni

Standard-Model Higgs	


Coupling constant	


e, µ, or τ	


1, 2, or 3	
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Including the possibility of CP-mirror-image decays 
(every particle replaced by its antiparticle), ���
the N decays modes are —	


  

€ 

N →ℓ− +H+   

€ 

N →ℓ+ +H−,	


Standard-Model Higgs	


CP mirror���
image modes	


Standard-Model Higgs	


€ 

N →ν +H0

€ 

N →ν +H0 ,

The See-Saw picture depends on Majorana masses.	

In the See-Saw picture, N = N.	


And today ν = ν. Try to confirm by observing 0νββ.	
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CP violation in the N decays, coming from 
phases among the yαi, will lead to —	


  

€ 

Γ N →ℓ− +H+( ) ≠ Γ N →ℓ+ +H−( )

€ 

Γ N →ν +H0( ) ≠ Γ N →ν +H0& 
' 
( ) 

* 
+ 

and	


This will produce a universe with unequal numbers ���
of leptons (ℓ– and ν) and antileptons (ℓ+ and ν). 

In this universe the lepton number L, defined by  	


  

€ 

L ℓ−( ) = L ν( ) = −L ℓ+( ) = −L ν ( ) =1, is not zero.	


This is Leptogenesis — Step 1 
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Leptogenesis — Step 2 
The Standard-Model Sphaleron process acts. ���

This process does not conserve the Lepton Number L, ���
or its Baryonic equivalent, the Baryon Number B, defined by 	


€ 

B(nucleon) = −B(antinucleon) = 3B(quark) = −3B(antiquark) =1

€ 

Bi = 0
Li ≠ 0

€ 

Bf ≅ −
1
3
Li

L f ≅
2
3
Li ≅ −2Bf

Sphaleron ���
Process	


Initial state ���
from N decays	


Final state	


There is now a nonzero Baryon Number. 	
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Eventually, there will be nucleons, ���
but ∼ no antinucleons.	


Reasonable parameters give���
 the observed               .               	


€ 

n nγNuc 
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Seeking CP in neutrino oscillation ���
is now a worldwide goal. 	


The search will use long-baseline 
accelerator neutrino beams to study ���

νµ → νe and νµ → νe , or their inverses. 	


Generically, leptogenesis and ���
light-neutrino CP imply each other.	




Detector	


e+	


π–	


Detector	


e–	
µ+	


π+	


ν	


µ–	

vs.	


Do these two CP-mirror-image processes  
have different rates?  

ν	

Anti-Detector	
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To confirm leptonic CP violation, compare  
two CP-mirror-image neutrino oscillations. 
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This is today’s version of comparing —	


with —	


N	


e–	


H+	


N	


e+	


H–	
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Are    There!

Sterile   Neutrinos?!
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Sterile Neutrino ���
One that does not couple ���
to the SM W or Z boson	


A “sterile” neutrino may well couple 
to some non-SM particles. These 

particles could perhaps be found at 
LHC or elsewhere. 




The Hints of eV-Mass Sterile Neutrinos!
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Probability Oscillation( )∝ sin2 1.27Δm2 eV2( ) L m( )
E MeV( )

#

$
%
%

&

'
(
(

At least 1 sterile  neutrino	


Γ Z→νν( ) Exp
Γ Z→One νν Flavor( ) SM

= 2.984± 0.009Then	


At least 4 mass eigenstates   	


At least 4 flavors	


These            a Δm2 ∼ 1 eV2, bigger ���
 than the two established splittings.   	


There are several hints of oscillation with L(m)/E(MeV) ∼ 1: 	


∼ 1eV2	




The Hints of eV2-Scale Δm2!
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νµ →νe

νµ →νe

Possible Oscillation	


νµ →νe

νe →Not νe

νe →Not νe

MiniBooNE	


LSND	


Reactor Exps.	


51Cr and 37Ar ���
Source Exps.	


Experiment	


MiniBooNE	


Comment	

Interesting	


Somewhat disfavored by 
ICARUS & OPERA	


NOT constrained by 
ICARUS & OPERA	


Flux uncertainty ∼ 
6% size of effect 	


Detection efficiency?	
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A: Some interesting experiments ���
are planned or suggested. 


Q: So, are there eV-scale ���
sterile neutrinos?
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Good luck! 


