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Lecture 1 
¥  RAW data to Physics – step by step 

¥  What does it take from getting the data out of the detector to 
producing a physics result. 

Lecture 2 

¥  From RAW data to Standard Model Particles 

¥  about measuring the properties of the ‘final’ particles created 
from a proton-proton interaction. 

Lecture 3 
¥  From Standard Model Particles to measurements and 

searches 
¥  about how… 

2 



ASSUMPTIONS 

¥  You have never done a physics analysis. 
¥  You know a bit about the LHC. 
¥  You know a bit about a multi-purpose high-energy-physics 

detector. 
¥  You know a bit about how we get to RAW data. 

 

¥  These lectures will have a “slight” bias 
towards ATLAS. 

 

DISCLAIMER 
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FROM RAW DATA TO PHYSICS 

LECTURE 1 



Detector 

Publication 
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? 

How do we deal with physics events  
from when they leave the detector  

till when they make it into our publications? 



WHAT IS AN EVENT? 
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A crossing of the two LHC proton beams at an interaction point 



WHAT IS AN EVENT? 
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Proton bunches 
>1011 protons/bunch 

colliding at 13TeV and at 40MHz in run2 
collided at 7/8TeV and at 20MHz in run1  
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AN EVENT’S LIFETIME 
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TRIGGERING ON PHYSICS 
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THE DATA  
ACQUISITION 

DAQ 

10 

At every trigger accept: 



WHAT DOES RAW CONTAIN? 

L1 Trigger Bits 
Before Prescale 

L1 Trigger Bits 
After Prescale 

L1 Trigger Bits 
After Veto 

A simple example from the trigger on ATLAS (run1 data) 
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WHAT DOES RAW CONTAIN? 

Enabled items, ID: 
0, 1, 2, 3, 4, 5, 9, 10, 11, 29, 38, 
39, 60, 64, 65, 66, 67, 68, 69, 74, 
95, 96, 97, 98, 108, 113, 132, 137, 
138, 139, 179, 202, 214, 215, 217, 
224, 241 

Enabled items, ID: 
1, 2, 4, 11, 38, 39, 60, 67, 68, 95, 
96, 108, 113, 132, 137, 138, 139, 
202, 214, 215, 217, 241 

Enabled items, ID: 
4, 67, 132, 139, 202 

A simple example from the trigger on ATLAS (run1 data) 
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WHAT DOES RAW CONTAIN? 

Enabled items, ID: 
0, 1, 2, 3, 4, 5, 9, 10, 11, 29, 38, 
39, 60, 64, 65, 66, 67, 68, 69, 74, 
95, 96, 97, 98, 108, 113, 132, 137, 
138, 139, 179, 202, 214, 215, 217, 
224, 241 

Enabled items, ID: 
1, 2, 4, 11, 38, 39, 60, 67, 68, 95, 
96, 108, 113, 132, 137, 138, 139, 
202, 214, 215, 217, 241 

Enabled items, name: 
L1_EM18VH, 
L1_2TAU11I_EM14VH, 
L1_2TAU11_TAU20_EM14VH, 
L1_2TAU11I_TAU15, 
L1_2EM6_EM16VH 

A simple example from the trigger on ATLAS (run1 data) 
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WHAT DOES RAW CONTAIN? 

¥ More than 300K such 
words in each event, 
corresponding to the full 
data from all the 
detector components. 

  
¥ Data size: 1-1.5MB / 

event depending on the 
compression. Pretty 
consistent between 
ATLAS and CMS. 

¥ Challenge:  
    make sense out of all 
these numbers!! 



Detector Trigger 

WHAT DOES RAW CONTAIN? 
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THE LARGE HADRON COLLIDER 

Proton bunches 
>1011 protons/bunch 
(colliding at ~40MHz) 

p-p collisions with 
interesting parton 

interactions 
(<kHz) 

p p 

~25 p-p collisions/bc 

New Particle! 
(<<mHz?) 
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A DETECTOR (E.G. ATLAS) 

✓  Fast 
✓ Granular 
✓  Resistant to radiation 
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A DETECTOR (E.G. ATLAS) 
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PARTICLES THROUGH MATTER 
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ONLINE RECONSTRUCTION 
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TRIGGERING ON PHYSICS 

✔ 

✘ 

✔ 

✔ ✔ 
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TRIGGER MENUS 

The Journal’s name

The distribution is driven by physics priorities, and ATLAS has chosen to give the most generic
triggers the larger fraction of the bandwidth. Single electron and muon triggers typically use 50 Hz
each; generic triggers, such as multi-jets and multi-leptons, typically use 5-15 Hz; and specialized
triggers are given ⇡1 Hz. About 20% of the bandwidth is dedicated to the supporting triggers. The
main triggers that compose the ATLAS 2012 trigger menu are shown in Table 1.

Table 1. The main ATLAS triggers in 2012. The total rate corresponds to the full menu that includes many
more triggers than what is listed in this table.

Trigger Typical o✏ine selection Trigger Selection L1 Peak EF Avg.

L1 EF Rate (kHz) Rate (Hz)
Lpeak=7e33/cm2s Lavg.=5e33/cm2s

Single leptons Single iso µ, pT >25 GeV 15 GeV 24 GeV 8 45
Single iso e, pT >25 GeV 18 GeV 25 GeV 17 70

Two leptons

Two µ’s, each pT >15 GeV 2⇥10 GeV 2⇥13 GeV 1 5
Two µ’s, pT >20, 10 GeV 15 GeV 18, 8 GeV 8 8
Two e’s, each pT >15 GeV 2⇥10 GeV 2⇥12 GeV 6 8
Two e’s, pT >25, 10 GeV 18 GeV 25, 7 GeV 17 5
Two ⌧’s, pT >45, 30 GeV 15, 11 GeV 29, 20 GeV 12 12

Two photons Two �’s, each pT >25 GeV 2⇥10 GeV 2⇥20 GeV 6 10
Two �’s, pT >40, 30 GeV 16, 12 GeV 35, 25 GeV 6 7

Single jet Jet (R = 0.4), pT >360 GeV 75 GeV 370 GeV 2 5
Jet (R = 1.0), pT >470 GeV 460 GeV 2

Emiss
T Emiss

T >150 GeV 40 GeV 80 GeV 2 17

Multi-jets
4 jets, each pT >85 GeV

4⇥15 GeV
4⇥80 GeV

1
8

5 jets, each pT >60 GeV 5⇥55 GeV 2
6 jets, each pT >50 GeV 6⇥45 GeV 4

b�jets 4 jets, each pT >50 GeV 4⇥15 GeV 4⇥45 GeV 1 4out of which one is b�tagged plus b�tag
Total < 75 400

3 SUSY triggers

The triggers outlined in Table 1 are extensively used by SUSY searches, and in some cases, their
thresholds were adjusted to fit the SUSY requirements (e.g. multi-jet triggers). Several additional
selections were added to the ATLAS trigger menu, to extend the trigger coverage for SUSY searches.
Some examples are outlined in Table 2. Additionally, the SUSY searches motivated the introduction
in the delayed stream of looser hadronic and Emiss

T triggers, compared to what is in the prompt stream.
Examples of such triggers are given in Table 3.

4 Trigger performance improvements in 2012

To cope with the increased energy, luminosity and pile-up conditions of the 2012 data taking, the AT-
LAS experiment deployed improvements in the trigger selections and algorithms. The improvements
mostly a↵ecting SUSY selections were implemented in jet and missing transverse momentum (Emiss

T )
triggers. A summary of these improvements can be found elsewhere [3].
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THE EVENT AT TIER0 
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E.G. ALIGNMENT 
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E.G. BEAMSPOT 
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d0 vs phi with respect to the beam spot. For a correctly determined beam 
spot, this plot should be flat. For the first processing of the express stream, 
the beam spot is not yet known and therefore large variations as in this 
example are expected. In bulk reconstruction this effect is corrected. 



“FINAL” CALIBRATION 
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LUMINOSITY DETERMINATION 
¥  A measurement of the number of collisions per cm2 and second. 
¥  Multiple methods used for determining luminosity: reducing 

uncertainties.  
¥  Normalization is done with beam-separation scan (Van-der-Meer 

scan). Requires careful control of beam parameters.  

 
 

¥  Result: luminosity measurement with very small uncertainties 
(order of few %) with very fast turn-around time. 
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Eric Torrence July 2012

van der Meer Scans in Principle

5

S. van der Meer, CERN-ISR-PO-68-31 (1968)
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From http://cds.cern.ch/record/1490292/files/ATL-DAPR-SLIDE-2012-627.pdf  



LUMINOSITY – RECORDED  
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DATA QUALITY 

The data we analyze has to follow norms of quality such that our 
results are trustable.  

¥  Online: Fast monitoring of detector performance during data taking, 
using dedicated stream, “express stream”. 

¥  Offline: More thorough monitoring at two instances: 

¥  Express reconstruction; fast turn-around. 
¥  Prompt reconstruction: larger statistics. 

¥  What is monitored? 

¥  Noise in the detector. 
¥  Reconstruction (tracks, clusters, combined objects, resolution and 

efficiency). 
¥  Input rate of physics.  
¥  All compared to reference histograms of data that has been 

validated as “good”.  
44 
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DATA QUALITY AND “GRL” 
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DATA QUALITY 
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DATA QUALITY 
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MONTE CARLO SIMULATION – WHY 

¥  We only build one detector. 
¥  How do we compromise physics due to detector design?  
¥  How would a different detector design affect measurements? 
¥  How does the detector behave to radiation? 

¥  In the detectors we only measure voltages, currents, times. 

¥  It’s an interpretation to say that such-and-such particle caused such-
and-such signature in the detector.  

¥  Simulating the detector behavior we correct for inefficiencies, 
inaccuracies, unknowns. 

¥  We need a theory to tell us what we expect and to compare our data 
against. 

¥  A good simulation is the way to demonstrate to the world that we 
understand the detectors and the physics we are studying. 

51 (Simulation material by Z. Marshal) 



MONTE CARLO PRODUCTION CHAIN 
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Event Generation 
simulate the physics process. 

Detector Simulation 
simulate the interaction of the 

particles with the detector material. 

Digitization 
Translate interactions with detector 

into realistic signals. 

Reconstruction 
Go from signals back to particles, 

as for real data. 
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Event Generation 
simulate the physics process. 

Detector Simulation 
simulate the interaction of the 

particles with the detector material. 

Digitization 
Translate interactions with detector 

into realistic signals. 

Reconstruction 
Go from signals back to particles, 

as for real data. 

From < 1s to a few hours / event. 

From 1 to 10min / event 

From 5 to 60s / event 

How much processing time 
needed for each step? 



MONTE CARLO PRODUCTION CHAIN 

Event Generation 
simulate the physics process. From < 1s to a few hours / event. 

How much processing time 
needed for each step? 

¥  ~ 50 MC generators on the market.  
¥  >> 50 combinations of MC generators in a sample. 
¥  ~ 35 K samples generated on ATLAS in the last “campaign” of 2012. 
¥  ~ 7 B events! 



MONTE CARLO PRODUCTION CHAIN 

Event Generation 
simulate the physics process. From < 1s to a few hours / event. 

How much processing time 
needed for each step? 

¥  ~ 50 MC generators on the market. How many can you name? 
¥  >> 50 combinations of MC generators in a sample. 
¥  ~ 35 K samples generated on ATLAS in the last “campaign” of 2012. 
¥  ~ 7 B events! 

Courtesy: Z. Marshall 
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Event Generation 
simulate the physics process. 

Detector Simulation 
simulate the interaction of the 

particles with the detector material. 

Digitization 
Translate interactions with detector 

into realistic signals. 

Reconstruction 
Go from signals back to particles, 

as for real data. 

From < 1s to a few hours / event. 

From 1 to 10min / event 

From 5 to 60s / event 

How much processing time 
needed for each step? 
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Write Me a Simulation for This:


THIS IS A BORING EVENT 

4/30/14& Z&Marshall&.&Monte&Carlo&Simula8on&in&a&Nutshell& 4&

(Simulation material by Z. Marshal) 



SIMULATION – HOW  
1.  Break the problem up as much as possible. 

-  Do you understand all the steps of the system? 
2.  For each piece of the problem, write some code 

-  Did you remember all the effect for each step? 
3.  Figure out what accuracy is needed.  

-  And spend the appropriate time in working out the details. 

4.  Cross your fingers and press the button. 
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≈ ≈ 

(Simulation material by Z. Marshal) 



HOW DO YOU KNOW IT WORKED? 

59 

How Do You Know It Worked?

•  When the simulation can recreate something it was not 

designed for, you’re doing well…


Cosmic rays are one 
interesting test.  Use the 
simulation to propagate 
muons from the Earth�s 
surface to the detector!


Here: energy loss in the 
calorimeter by a muon


4/30/14& Z&Marshall&.&Monte&Carlo&Simula8on&in&a&Nutshell& 57&(Simulation material by Z. Marshal) 



Our LHC Simulation: The Dream


4/30/14& Z&Marshall&.&Monte&Carlo&Simula8on&in&a&Nutshell& 6&

Generator 

MCTruth 
(Gen) 

Particle Filter HepMC 

Simulation 

ROD Input 
Digits ROD Emulation 

ROD Emulation 
(pass-through) 

Bytestream 
Conversion 

Raw Data 
Objects 

Reconstruction 

Bytestream 

MCTruth 
(Sim) 

Hits Digitization 

Pile-up 

MCTruth 
(Pile-up) 

Merged Hits 

MCTruth 
and SDOs 
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Our LHC Simulation: The Reality?


4/30/14& Z&Marshall&.&Monte&Carlo&Simula8on&in&a&Nutshell& 7&

This is most people’s view of  the chain


Generator 

MCTruth 
(Gen) 

Different&magic&
happens&

Reconstruction 
MCTruth 

(Sim) MAGIC&
HAPPENS&
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Event Generation 
simulate the physics process. 

Detector Simulation 
simulate the interaction of the 

particles with the detector material. 

Digitization 
Translate interactions with detector 

into realistic signals. 

Reconstruction 
Go from signals back to particles, 

as for real data. 

From < 1s to a few hours / event. 

From 1 to 10min / event 

From 5 to 60s / event 

How much processing time 
needed for each step? 



SIMULATION – FULL AND FAST 
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Proton bunches 
>1011 protons/bunch 

(colliding at ~40MHz in run2) 

~25 p-p collisions / bunch crossing 

PILE-UP  
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11 reconstructed vertices 

Track pT > 0.5 GeV 

Z->µµ event;  
2011 data. 
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11 reconstructed vertices 

Track pT > 2 GeV 

Z->µµ event;  
2011 data. 
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Z->µµ event;  
2011 data. 

Track pT > 10 GeV 

11 reconstructed vertices 67 



INT / XING 
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PILEUP IN SIMULATION 
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Detector 

Calibration 

Trigger 

Reconstruction Data  
Prep 

Signal 

Relevant quantity 

# 
ev

en
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Signal 

Background 

Monte Carlo Simulations 
Publication 

Data analysis 

END OF LECTURE 1 
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BACKUP 
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THE DATA  
ACQUISITION 

L1 
(hardware trigger) 

Detector 
readout 

Data-flow 
system HLT farm 

Data storage 

L1 accept 

Data request 

HLT decision 
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THE DATA  
ACQUISITION 

L1 
(hardware trigger) 

Detector 
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Data-flow 
system HLT farm 

Data storage 

L1 accept 

Data request 

HLT decision 
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10 jets  
    with pT > 50GeV 
MET = 120 GeV 
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IN A P-P COLLISION 

p p 
PROTON PROTON 
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TRIGGER MENUS FOR SUSY 

Hadron Collider Physics Symposium 2012

Table 2. SUSY-motivated triggers in the 2012 trigger menu. The �� selection is applied at EF, between the
Emiss

T and the two leading jets with ET >45 GeV. HT is defined as the sum of jets with ET >45 GeV, and is
calculated in events that already satisfied the requirement of a leading jet ET >145 GeV. In some combined

triggers, EF-only selections are implemented for jets and Emiss
T when the L2 rejection is su�cient; this feature

provides optimal online to o✏ine correlations, as at EF the jet and Emiss
T reconstruction is similar to o✏ine.

Selection EF trigger election
EF Avg. Rate

(Hz)
Lavrg=5e33/cm2s

Single jet Jet ET >145 GeV 8& Emiss
T & EF-only Emiss

T >70 GeV
Single jet Jet ET >80 GeV 8& Emiss

T & ��(jet,Emiss
T ) & Emiss

T >70 GeV & �� >1.0 rad
HT >700 GeV 8

Single electron Electron pT >25 GeV 26& Emiss
T & EF-only Emiss

T >35 GeV
Single muon Muon pT >24 GeV 15& single jet & Emiss

T & jet ET >65 GeV & EF-only Emiss
T >40 GeV

Single photon Photon pT >40 GeV 5& Emiss
T & EF-only Emiss

T >60 GeV
3 electrons pT > 18, 2⇥7 GeV <1
3 muons pT > 18, 2⇥4 GeV <1

3 electrons & muons pT > 2⇥7 (e), 6 (µ) GeV <1
pT > 7 (e), 2⇥6 (µ) GeV <1

Table 3. Triggers in the delayed stream, introduced to enhance the trigger coverage for searches for which
SUSY was one of the main motivations. The Emiss

T selection di↵ers not only at the HLT but also at the L1, where
it is looser by 5 GeV. The jet variable R corresponds to the jet cone size.

Trigger EF trigger Selection
Prompt Stream Delayed Stream

Multi-jets
4⇥80 GeV 4⇥65 GeV
5⇥55 GeV 5⇥45 GeV6⇥45 GeV

HT 700 GeV 500 GeV
Single jet (R = 1.0) 460 GeV 360 GeV
Emiss

T 80 GeV 60 GeV

5 Summary

The improvements made to jet and Emiss
T triggers for 2012 together with new trigger selections and

the addition of a delayed processing stream have allowed ATLAS to meet the challenges of increased
luminosity and pile-up and maintain excellent e�ciency for SUSY signals in 2012 data taking.

References

[1] L. Evans and P. Bryant (editors) 2008 JINST 3 S08001.
[2] ATLAS Collaboration, 2008 JINST 3 S08003.
[3] ATLAS Collaboration, ATL-DAQ-PUB-2012-002, https://cds.cern.ch/record/1492192.
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‘DELAYED’ TRIGGERS 

Hadron Collider Physics Symposium 2012

Table 2. SUSY-motivated triggers in the 2012 trigger menu. The �� selection is applied at EF, between the
Emiss

T and the two leading jets with ET >45 GeV. HT is defined as the sum of jets with ET >45 GeV, and is
calculated in events that already satisfied the requirement of a leading jet ET >145 GeV. In some combined

triggers, EF-only selections are implemented for jets and Emiss
T when the L2 rejection is su�cient; this feature

provides optimal online to o✏ine correlations, as at EF the jet and Emiss
T reconstruction is similar to o✏ine.

Selection EF trigger election
EF Avg. Rate

(Hz)
Lavrg=5e33/cm2s

Single jet Jet ET >145 GeV 8& Emiss
T & EF-only Emiss

T >70 GeV
Single jet Jet ET >80 GeV 8& Emiss

T & ��(jet,Emiss
T ) & Emiss

T >70 GeV & �� >1.0 rad
HT >700 GeV 8

Single electron Electron pT >25 GeV 26& Emiss
T & EF-only Emiss

T >35 GeV
Single muon Muon pT >24 GeV 15& single jet & Emiss

T & jet ET >65 GeV & EF-only Emiss
T >40 GeV

Single photon Photon pT >40 GeV 5& Emiss
T & EF-only Emiss

T >60 GeV
3 electrons pT > 18, 2⇥7 GeV <1
3 muons pT > 18, 2⇥4 GeV <1

3 electrons & muons pT > 2⇥7 (e), 6 (µ) GeV <1
pT > 7 (e), 2⇥6 (µ) GeV <1

Table 3. Triggers in the delayed stream, introduced to enhance the trigger coverage for searches for which
SUSY was one of the main motivations. The Emiss

T selection di↵ers not only at the HLT but also at the L1, where
it is looser by 5 GeV. The jet variable R corresponds to the jet cone size.

Trigger EF trigger Selection
Prompt Stream Delayed Stream

Multi-jets
4⇥80 GeV 4⇥65 GeV
5⇥55 GeV 5⇥45 GeV6⇥45 GeV

HT 700 GeV 500 GeV
Single jet (R = 1.0) 460 GeV 360 GeV
Emiss

T 80 GeV 60 GeV

5 Summary

The improvements made to jet and Emiss
T triggers for 2012 together with new trigger selections and

the addition of a delayed processing stream have allowed ATLAS to meet the challenges of increased
luminosity and pile-up and maintain excellent e�ciency for SUSY signals in 2012 data taking.

References

[1] L. Evans and P. Bryant (editors) 2008 JINST 3 S08001.
[2] ATLAS Collaboration, 2008 JINST 3 S08003.
[3] ATLAS Collaboration, ATL-DAQ-PUB-2012-002, https://cds.cern.ch/record/1492192.
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Rate (2012 conditions) 
20 MHz 

Bunch crossing rate 
6.4x108 

Interactions/s 
 
75 kHz 
Peak rate 
 
 
 

6 kHz 
Peak rate 
 
600 Hz 
Avg. rate, including 
200 Hz delayed stream  
(stored for later reconstruction 
when computing resources 
available) 
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Signal triggers 
Jet Multiplicity pT cut |η| 
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Background/support triggers 
Type Purpose 
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Single 
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THE BENEFITS 
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1 Introduction

Knowledge of the quality of recorded data underpins all particle physics results. Careful monitoring of
data quality is necessary to understand data conditions and to enable the diagnosis and elimination of
detector problems. The purpose of this note is to provide a summary of the data quality operations and
organization followed by ATLAS in 2012, from data taking to the delivery of the final dataset suitable for
physics analysis. Section 2 describes the global ATLAS data quality organisation, and a summary of the
ATLAS data quality losses will be given in Section 2.2. In Sections 3 to 24, the data quality organisation
and performance will be detailed separately for each subsystem. Finally, Section 25 concludes with a
short list of recommendations for the LHC Run2.

2 ATLAS Data Quality Operations

Figure 1: The ATLAS data quality operation scheme in 2012.

Figure 1 shows the data quality operation scheme followed by the ATLAS collaboration in 2012. A
first data quality assessment is performed online in the ATLAS control room with dedicated tools [1]. The
online monitoring is done by the system shifters (detectors, trigger, luminosity, TDAQ) and a global data
quality shifter. The goal of the online monitoring is to spot detector failures as quickly as possible, and to
limit the amount of unrecoverable data due to severe coverage losses, timing shifts and data corruption.
The monitoring plots are archived and can be retrieved o✏ine for further cross-checks.

4

From Eric Torrence 



DATA QUALITY – DEFECTS  
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