Beyond the Standard Model

CERN summer student lectures 2015

Exercises

Christophe Grojean

DESY (Hamburg) ICREA@IFAE (Barcelona) (christophe.grojean@cern.ch)

Units

Show that
[ħ]=M.L².T⁻¹ and [c]=L.T⁻¹

Derive the formula of the Casimir force using dimensional arguments

Check the consistency of the classical/quantum correspondence at the dimensional level:

•
$$E \to i\hbar \frac{\partial}{\partial t}$$
 & $p \to i\hbar \frac{\partial}{\partial x}$

□ Show that

- 0 1s≈1.52x10²⁷ ħ/TeV
- O 1m≈5.1x10¹⁸ ħc/TeV
- O 1kg≈5.61x10²³ TeV/c²

Planck units:

- ${\rm O}$ Using the Newton constant, \hbar and c, construct a mass scale, a length scale and a time scale
- Compare the density matter of the universe today (10⁻²⁹g/cm³) with the Planck scale

Units

□ Schwarzschild radius & Compton wavelength:

- The Schwarzschild radius of an object of mass m is the measure of its mass in Planck units. The Compton wavelength is defined as $\hbar/(mc)$.
- Compute the Schwarzschild radius and the Compton wavelength of an electron, a proton, the top quark, a fly, a strawberry, a human body, the earth, the sun, a neutron star, a stellar black-hole, a supermassive BH, a micro-BH. What do you conclude?
- O Compute the Schwarzschild radius of a micro-BH assuming that the Planck scale has been reduced to 1 TeV. What do you conclude?

□ Classical/Quantum electron:

- ${\rm O}\,$ classical radius: using e, m_e and c, construct a length scale
- ${\rm O}\,$ Bohr radius: using e, m_e and $\hbar,$ construct a length scale

Wave equations

- Derive the Schrödinger equation from the classical expression of the energy
- Derive the Klein-Gordon equation from the relativistic energy equation
- Derive the Klein-Gordon equation from the Dirac equation