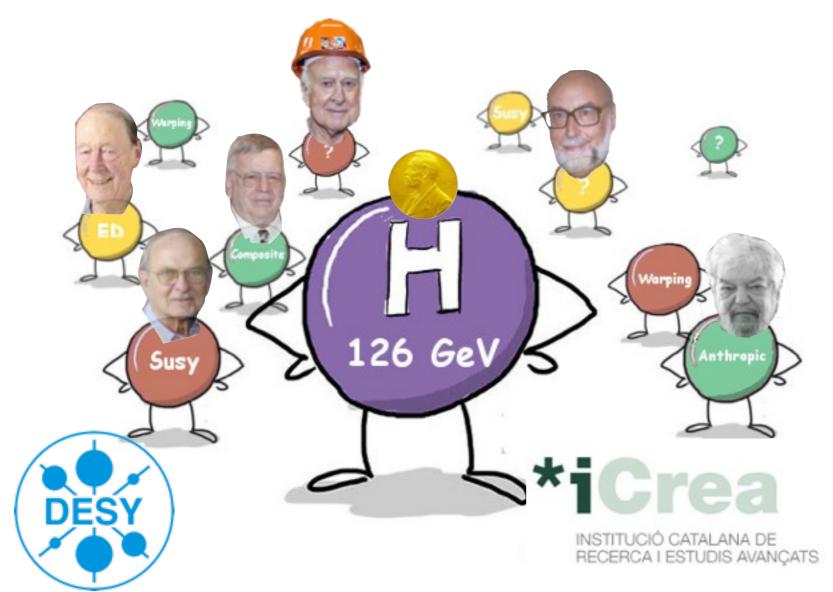
Beyond the Standard Model

CERN summer student lectures 2015



Exercises 4/5

Christophe Grojean

DESY (Hamburg) ICREA@IFAE (Barcelona) (christophe.grojean@cern.ch)

SUSY 1.0.1

Show that the following free Lagrangian

$$\mathcal{L} = \partial^{\mu}\phi^{\dagger}\partial_{\mu}\phi + i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$$

is invariant (up to a total derivative) under the SUSY transformations

$$\delta \phi = \bar{\epsilon} \psi$$
 and $\delta \psi = -i \left(\gamma^{\mu} \partial_{\mu} \phi \right) \epsilon$

Compute the commutator of two successive SUSY transformations to derive the susy algebra

$$\begin{bmatrix} \delta_{\epsilon_1}, \delta_{\epsilon_2} \end{bmatrix} \begin{pmatrix} \phi \\ \psi \end{pmatrix} = -i \left(\bar{\epsilon_2} \gamma^{\mu} \epsilon_1 \right) \partial_{\mu} \begin{pmatrix} \phi \\ \psi \end{pmatrix}$$

2

MSSM superpotential

the MSSM matter content fit into chiral multiplet with the following quantum numbers under SU(3)xSU(2)xU(1)

Particules	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
$L_L^i = \begin{cases} N^i = (\nu^i, \tilde{\nu}^i) \\ E_L^i = (l_L^i, \tilde{l}_L^i) \end{cases}$	1	2	1/2
$E^i = (CP(l_R^i), CP(\tilde{l}_R^i))$	1	1	-1
$Q_L^i = \begin{cases} U_L^i = (u_L^i, \tilde{u}_L^i) \\ D_L^i = (d_L^i, \tilde{d}_L^i) \end{cases}$	3	2	-1/6
$U_R^i = (CP(u_R^i), CP(\tilde{u}_R^i))$	$\overline{3}$	1	2/3
$D_R^i = (CP(d_R^i), CP(\tilde{d}_R^i))$	$\overline{3}$	1	-1/3
$H_d = \begin{cases} (h_d^0, \tilde{h}_d^0) \\ (h_d^-, \tilde{h}_d^-) \end{cases}$	1	2	1/2
$H_u = \begin{cases} (h_u^+, \tilde{h}_u^+)\\ (h_u^0, \tilde{h}_u^0) \end{cases}$	1	2	-1/2

Show the most general renormalizable superpotential is $W = H_uQD + H_uQU + H_dLE + \mu H_uH_d + LQD + UDD + LLE + \mu_LLH_u$

Search for a symmetry that would forbid the last 4 terms that violate baryon or lepton numbers

Christophe Grojean

BSM

3

CERN, July 2015

SU(5) GUT

\Box Anomaly cancelation: show that the SU(5) model is anomaly free

• Recall: the anomaly is proportional to sum over the chiral representations of the coefficients A(R) defined by

 $\operatorname{Tr}_R T^A \{ T^B, T^C \} = A(R) d^{ABC}$

where the totally symmetric coefficients dABC are defined in the fundamental representation by

$$T^A\{T^B, T^C\} = 2d^{ABC}$$

- Hint: A(5) and A(10) will be computed using a simple U(1) factor of SU(5), eg. the electric charge or the "hypercharge"
- □ When the fermion masses are generated with a Higgs in a 5 of SU(5), show that the theory is invariant under the global B-L symmetry
- □ The breaking pattern SU(5) $\stackrel{\langle \phi \rangle}{\rightarrow}$ SU(3)×SU(2)×U(1) $\stackrel{\langle H \rangle}{\rightarrow}$ U(1)_{em} can be achieved using an adjoint Higgs, $\langle \phi \rangle = v_1 \text{diag}(-3, -3, 2, 2, 2)$, and a Higgs transforming as a 5 of SU(5), $\langle H \rangle = (0, v_2/\sqrt{2}, 0, 0, 0)$. From the potential $V = -m_1^2 \text{Tr}\phi^2 + \lambda_1 (\text{Tr}\phi^2)^2 + \lambda_2 \text{Tr}\phi^4 - m_2^2 H^{\dagger}H + \lambda_3 (H^{\dagger}H)^2 + \lambda_4 H^{\dagger}H \text{Tr}\phi^2 + \lambda_5 H^{\dagger}\phi^2 H$
 - O find the value of v_1
 - compute the mass spectrum of the scalar fields. Interpret the result (Goldstone theorem).
 - Notice that to keep only a light doublet at the weak scale, a fine-tuning is needed. This is known as the doublet-triplet splitting problem

β function, gauge coupling running

The one-loop β function giving the running of the coupling constant of an SU(N) gauge symmetry is given by

$$\beta = \frac{dg}{d\log\mu} = -\frac{1}{16\pi^2}b_0g^3 \qquad \text{ie} \qquad \frac{d\alpha}{d\log\mu} = -\frac{1}{2\pi}b_0\alpha^2$$

where the coefficient b_0 is computed to

$$b_0 = \frac{11}{3}T_2(\texttt{spin-1}) - \frac{2}{3}T_2(\texttt{chiral spin-1/2}) - \frac{1}{3}T_2(\texttt{complex spin-0})$$

 $T_2(R)$ is defined from the traces of the product of two generators of SU(N) in the representation R

$$\operatorname{Tr}\left(T^{a}(R)T^{b}(R)\right) = T_{2}(R)\delta^{ab}$$

1/ Compute the b_0 coefficients for SU(3)xSU(2)xU(1) with the particle content of the SM

2/ Compute the b_0 coefficients for SU(3)xSU(2)xU(1) with the particle content of the MSSM

3/ Compute M_{GUT} and α_{GUT} in the SM and in the MSSM

4/ Compute $sin^2 \Theta_W$ in the SM and in the MSSM

5