Introduction to Monte Carlo Techniques

Introduction to Monte Carlo

- Lecture I:The Monte Carlo method
$\%$ theoretical foundations and limitations
* parton-level event generation
- Lecture 2: Hadron-level event generation
* parton showering
* hadronization and underlying event
* sample of results

A high-mass dijet event

CMS Experiment at LHC, CERN
Data recorded: Fri Oct 5 12:29:33 2012 CEST
Run/Event: 204541 / 52508234
Lumi section: 32

CMS Experiment at LHC, CERN
Data recorded: Fri Oct 5 12:29:33 2012 CEST Run/Event: 204541 / 52508234
Lumi section: 32

CMS PAS
 EXO-I2-059

LHC dijet

LHC dijet

LHC dijet

LHC dijet

Theoretical Status

Theoretical Status

Theoretical Statels ${ }^{\text {uark jer }}$

QCD Factorization

$$
\sigma_{p p \rightarrow X}\left(E_{p p}^{2}\right)=\int_{0}^{1} d x_{1} d x_{2} f_{i}(\underbrace{\left.x_{1}, \mu^{2}\right) f_{j}\left(x_{2}, \mu^{2}\right.}_{\begin{array}{c}
\text { momentum } \\
\text { fractions }
\end{array}}) \underbrace{\hat{\sigma}_{i j \rightarrow X}\left(x_{1} x_{2} E_{p p}^{2}, \mu^{2}\right)}_{\begin{array}{c}
\text { distributions }
\end{array}}
$$

- Jet formation and underlying event take place over a much longer time scale, with unit probability
- Hence they cannot affect the cross section
- Scale dependences of parton distributions and hard process cross section are perturbatively calculable, and cancel order by order

Parton Shower

- Shower = sequence of emissions with decreasing angles and energies
- Approximation: keep only contributions $\propto 1 / \theta$

$$
d^{2} \mathcal{P}=\frac{\alpha_{\mathrm{s}}}{\pi} \frac{d \theta}{\theta} P(z) d z \quad z=\frac{E_{i+1}}{E_{i}}
$$

- For very small energy and/or angle, emission is "unresolvable"

Parton Shower

$$
d^{2} \mathcal{P}=\frac{\alpha_{\mathrm{s}}}{\pi} \frac{d \theta}{\theta} P(z) d z
$$

- $\alpha_{\text {s }}$ increases as $Q=E \theta$ decreases
- When $Q<Q_{\min } \sim 1 \mathrm{GeV}$ $\alpha_{\mathrm{s}} \sim 1 \rightarrow$ hadronization

Parton Shower Evolution

Parton Shower Evolution

Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near $\Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$, perturbation theory breaks down and hadrons are formed
- Before that, at scales \sim few $\times \Lambda_{\mathrm{QCD}}$, there is universal preconfinement of colour
- Colour, flavour and momentum flows are only locally redistributed by hadronization

Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near $\Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$, perturbation theory breaks down and hadrons are formed
- Before that, at scales \sim few $\times \Lambda_{\mathrm{QCD}}$, there is universal preconfinement of colour
- Colour, flavour and momentum flows are only locally redistributed by hadronization

String Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near $\Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$, perturbation theory breaks down and hadrons are formed
- Before that, at scales \sim few $\times \Lambda_{\mathrm{QCD}}$, there is universal preconfinement of colour
- Colour flow dictates how to connect hadronic string (width \sim few $\times \Lambda_{\mathrm{QCD}}$) with shower

String Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near $\Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$, perturbation theory breaks down and hadrons are formed
- Before that, at scales \sim few $\times \Lambda_{\mathrm{QCD}}$, there is universal preconfinement of colour
- Colour flow dictates how to connect hadronic string (width \sim few $\times \Lambda_{\mathrm{QCD}}$) with shower

String Hadronization Model

- At short distances (large Q), QCD is like QED: colour field lines spread out (I/r potential)
- At long distances, gluon self-attraction gives rise to colour string (linear potential, quark confinement)
- Intense colour field induces quark-antiquark pair creation: hadronization

Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near $\Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$, perturbation theory breaks down and hadrons are formed
- Before that, at scales \sim few $\times \Lambda_{\mathrm{QCD}}$, there is universal preconfinement of colour
- Decay of preconfined clusters provides a direct basis for hadronization

Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near $\Lambda_{\mathrm{QCD}} \sim 200 \mathrm{MeV}$, perturbation theory breaks down and hadrons are formed
- Before that, at scales \sim few $\times \Lambda_{\mathrm{QCD}}$, there is universal preconfinement of colour
- Decay of preconfined clusters provides a direct basis for hadronization

Cluster Hadronization Model

Primary Light Clusters

- Mass distribution of preconfined clusters is universal
- Phase-space decay model for most clusters
- High-mass tail decays anisotropically (string-like)

Hadronization Status

- No fundamental progress since 1980s
* Available non-perturbative methods (lattice, AdS/ QCD, ...) are not applicable
- Less important in some respects in LHC era
\% Jets, leptons and photons are observed objects, not hadrons
- But still important for detector effects
\because Jet response, heavy-flavour tagging, lepton and photon isolation, ...

Underlying Event (MPI)

- Multiple parton interactions in same collision
* Depends on density profile of proton
- Assume QCD 2-to-2 secondary collisions
\div Need cutoff at low PT
- Need to model colour flow
\% Colour reconnections are necessary

Sample of Event Generator Results

MC Event Generators

- HERWIG
\Rightarrow Angular-ordered parton shower, cluster hadronization
\Rightarrow v6 Fortran; Herwig++
- PYTHIA

http://www.thep.lu.se/~torbjorn/Pythia.html

$\Rightarrow \mathrm{k}_{\mathrm{t}}$-ordered parton shower, string hadronization
\Rightarrow v6 Fortran; v8 C++

- SHERPA
http://projects.hepforge.org/sherpa/
\Rightarrow Dipole-type parton shower, cluster hadronization
$\Rightarrow C++$
"General-purpose event generators for LHC physics", A Buckley et al., arXiv:I IO I.2599, Phys. Rept. 504(20 I I) I45

Jets

Jet PT

Second jet

Jet PT

Extra jets from parton showers

Jet event shapes

$$
T_{c} \equiv \max _{\hat{n}_{\mathrm{T}}} \frac{\sum_{i}\left|\vec{p}_{\perp, i} \cdot \hat{n}_{\mathrm{T}}\right|}{\sum_{i} p_{\perp, i}}
$$

$$
T_{m, \mathcal{C}} \equiv \frac{\sum_{i}\left|\vec{p}_{\perp, i} \times \hat{n}_{\mathrm{T}, \mathcal{C}}\right|}{\sum_{i} p_{\perp, i}}
$$

Jet profile

Jet multiplicity

Multijets

W+jets

Charged particles in jets

ALICE, arXiv: I 408.5723

Multiplicities in Z^{0} decay

Min Bias and Underlying Event

Min bias $\mathrm{PT}^{(}\left(\pi^{+}, \mathrm{K}^{+}\right)$

- Min bias = all scattering events

Underlying Event

Transverse charged particle density

Underlying Event

Vector Bosons

Z^{0} PT

Absolute normalization

Normalized to data

Z^{0} рт $(13 \mathrm{TeV})$

ATL-PHYS-PUB-2015-02I(24 July 2015)

Limitations of LO+parton shower

- Hard process: $q \bar{q} \rightarrow Z^{0} / W^{ \pm}$

- Leading-order (LO) normalization \rightarrow need next-to-LO (NLO)
- Worse for high Pт and/or extra jets \longrightarrow need multijet merging

Summary of Lecture 2

- Parton shower keeps largest small-angle contribution
- Shower gives preconfinement of colour
- This allows local model of hadronization
- String and cluster models both still viable
- Underlying event due to multiple interactions
- Sample of event generator results
- Further improvements (matching \& merging) now used

Thanks for listening!

