Introduction to Monte Carlo Techniques

Bryan Webber Cavendish Laboratory University of Cambridge

Introduction to Monte Carlo Techniques

CERN Summer Student Lectures 2015

Introduction to Monte Carlo

- Lecture I: The Monte Carlo method
 - theoretical foundations and limitations
 - parton-level event generation
- Lecture 2: Hadron-level event generation
 - parton showering
 - hadronization and underlying event
 - sample of results

A high-mass dijet event

CMS PAS EXO-12-059

Theoretical Status

Theoretical Status

Introduction to Monte Carlo Techniques

QCD Factorization

- Jet formation and underlying event take place over a much longer time scale, with unit probability
- Hence they cannot affect the cross section
- Scale dependences of parton distributions and hard process cross section are perturbatively calculable, and cancel order by order

Parton Shower

- Shower = sequence of emissions with decreasing angles and energies
- Approximation: keep only contributions $\propto 1/ heta$

$$d^{2}\mathcal{P} = \frac{\alpha_{s}}{\pi} \frac{d\theta}{\theta} P(z) dz \qquad \qquad z = \frac{E_{i+1}}{E_{i}}$$

For very small energy and/or angle, emission is "unresolvable"

Parton Shower

Parton Shower Evolution

Introduction to Monte Carlo Techniques

Parton Shower Evolution

CERN Summer Student Lectures 2015

Introduction to Monte Carlo Techniques

Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- October and hadrons are formed
- Before that, at scales ~ few x Λ_{QCD} , there is universal preconfinement of colour
- Colour, flavour and momentum flows are only locally redistributed by hadronization

Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{OCD} ~200 MeV perturbation theory breaks down and hadrons are formed
- Before that, at scales ~ few x Λ_{QCD} , there is universal preconfinement of colour
- Colour, flavour and momentum flows are only locally redistributed by hadronization

String Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{OCD} ~200 MeV perturbation theory breaks down and hadrons are formed
- Before that, at scales ~ few x Λ_{QCD} , there is universal preconfinement of colour
- Colour flow dictates how to connect hadronic string (width ~ few x Λ_{QCD}) with shower

String Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{OCD} ~200 MeV perturbation theory breaks down and hadrons are formed
- Before that, at scales ~ few x Λ_{QCD} , there is universal preconfinement of colour
- Colour flow dictates how to connect hadronic string (width ~ few x Λ_{QCD}) with shower

String Hadronization Model

- At short distances (large Q), QCD is like QED: colour field lines spread out (1/r potential)
- At long distances, gluon self-attraction gives rise to colour string (linear potential, quark confinement)
- Intense colour field induces quark-antiquark pair creation: hadronization

Introduction to Monte Carlo Techniques

Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{OCD} ~200 MeV perturbation theory breaks down and hadrons are formed
- Before that, at scales ~ few x Λ_{QCD} , there is universal preconfinement of colour
- Decay of preconfined clusters provides a direct basis for hadronization

Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{OCD} ~200 MeV perturbation theory breaks down and hadrons are formed
- Before that, at scales ~ few x $\Lambda_{\rm QCD}$, there is universal preconfinement of colour
- Decay of preconfined clusters provides a direct basis for hadronization

Cluster Hadronization Model

- Mass distribution of preconfined clusters is universal
- Phase-space decay model for most clusters
- High-mass tail decays anisotropically (string-like)

Introduction to Monte Carlo Techniques

Hadronization Status

- No fundamental progress since 1980s
 - Available non-perturbative methods (lattice, AdS/ QCD, ...) are not applicable
- Less important in some respects in LHC era
 - Jets, leptons and photons are observed objects, not hadrons
- But still important for detector effects
 - Jet response, heavy-flavour tagging, lepton and photon isolation, ...

Underlying Event (MPI)

- Multiple parton interactions in same collision
 - Depends on density profile of proton
- Assume QCD 2-to-2 secondary collisions
 - Need cutoff at low pT
- Need to model colour flow
 - Colour reconnections are necessary

Sample of Event Generator Results

MC Event Generators

• HERWIG

http://projects.hepforge.org/herwig/

- Angular-ordered parton shower, cluster hadronization
- ➡ v6 Fortran; Herwig++

• PYTHIA

http://www.thep.lu.se/~torbjorn/Pythia.html

- ➡ k_t-ordered parton shower, string hadronization
- ➡ v6 Fortran; v8 C++
- SHERPA

➡ C++

http://projects.hepforge.org/sherpa/

Dipole-type parton shower, cluster hadronization

"General-purpose event generators for LHC physics", A Buckley et al., arXiv:1101.2599, Phys. Rept. 504(2011)145

Jet pt

http://mcplots.cern.ch

CERN Summer Student Lectures 2015

Jet pt

Extra jets from parton showers

Jet event shapes

Introduction to Monte Carlo Techniques

Jet profile

Introduction to Monte Carlo Techniques

Ident Lectures 2015

Jet multiplicity

ALICE, arXiv: 1408.5723

Introduction to Monte Carlo Techniques

CERN Summer Student Lectures 2015

Multiplicities in Z⁰ decay

Introduction to Monte Carlo Techniques

CERN Summer Student Lectures 2015

Min Bias and Underlying Event

Min bias $p_T(\pi^+, K^+)$

Min bias = all scattering events

Introduction to Monte Carlo Techniques

Underlying Event

Underlying Event

Vector Bosons

Z⁰ рт

Introduction to Monte Carlo Techniques

Z⁰ p_T (I 3 TeV)

ATL-PHYS-PUB-2015-021(24 July 2015)

Limitations of LO+parton shower

• Hard process: $q\bar{q} \rightarrow Z^0/W^{\pm}$

Leading-order (LO) normalization
need next-to-LO (NLO)

Worse for high p_T and/or extra jets p need multijet merging

Summary of Lecture 2

- Parton shower keeps largest small-angle contribution
- Shower gives preconfinement of colour
- This allows local model of hadronization
- String and cluster models both still viable
- Underlying event due to multiple interactions
- Sample of event generator results
- Further improvements (matching & merging) now used

Thanks for listening!