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Goals
❖ Searches span very wide spectrum 

- Overview of many types of searches, with focus on 
experimental aspects 

- Challenges posed at hadron colliders 

- Ease of generating false positives 

- Techniques to deal with limited knowledges 

- But far from exhaustive! 

❖ Thread in run 1 results 
- Including some that may be hints
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Standard Model Today
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Triumph of Gauge Theories!
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Standard Model Today
❖ Higgs discovery 

completes the Standard 
Model 
- Fully consistent, complete, 

precise description of 
strong, electromagnetic 
and weak interactions 

❖ Even generate fermion 
masses 
- But that is the only 

property of fermions we 
“understand”
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In Words
❖ Matter is built of spin 1/2 particles that interact by 

exchanging 3 different kinds of spin 1 particles 
corresponding to 3 different (gauge) interactions 

❖ There appear to be 3 generations of matter particles 
❖ The 4 different matter particles in each generation carry 

different combinations of quantized charges 
characterizing their couplings to the interaction bosons 

❖ The matter fermions and the weak bosons have “mass” 
❖ Gravitation is presumably mediated by spin 2 gravitons 
❖ Gravitation is extremely weak for typical particle 

masses 
❖ There appear to be 3 macroscopic space dimensions
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About the Standard Model
❖ It’s a theory of interactions: 

- Properties of fermions are inputs 

- Properties of interaction bosons in terms of 
couplings, propagations, masses are linked: 

- Measuring a few allows us to predict the rest, then 
measure and compare with expectation 

❖ It’s remarkably successful: 
- Predictions verified to be correct at sometimes 

incredible levels of precision 

- After ~40 years, still no serious cracks
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Precision Results
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muon g-2: 0.7 ppm!

B, K physics
LEP, SLD & Tevatron
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Lacking in the Standard Model
❖ Clear structure in fermionic 

sector unexplained 
- No understanding of the 

“charges” 

- Evidence of selective 
principle(s) 
- E.g. no neutral colored fermions 

- q(down) = q(e)/Nc 

- Interpreted as evidence for 
(grand) unification 
- Grand or less grand? (One or 

more scales?)
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Lacking in the Standard Model
❖ Many cosmological issues 

- Dark matter and dark energy 
- Not enough CP violation in 

the quark sector for 
baryogenesis 

- Baryon number violation 
- Present in the SM through B-L 

(sphalerons) 

- Baryogenesis through 
leptogenesis and B-L? 
‣ Untestable?
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Many Fundamental Questions
❖ What exactly is spin?  Or color?  Or electric charge?  

Why are they quantized? 
❖ Are there only 3 generations?  If so, why? 
❖ Why are there e.g. no neutral, colored fermions? 
❖ What is mass?  Why are particles so light? 
❖ Is there a link between particle and nucleon 

masses? 
❖ How does all of this reconcile with gravitation?  How 

many space-time dimensions are there really? 
❖ ...
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The Old Plot
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Vector Boson Scattering
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• There was in fact one known problem with the 
Standard Model (+ a second, related, lesser one): 

• If we collide W’s or Z’s (not so easy...), the scattering cross-
section grows with the center of mass energy, and gets out of 
control (violates unitarity) at about 1.7 TeV: σ(WW → WW) ∼ s 

• This is similar to “low” energy neutrino scattering: 
• If q2 << (MW)2, looks like a “contact                                  

interaction”, and cross-section grows                             
with center of mass energy: σ ∼ s 
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Vector Boson Scattering
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• There was in fact one known problem with the 
Standard Model (+ a second, related, lesser one): 

• If we collide W’s or Z’s (not so easy...), the scattering cross-
section grows with the center of mass energy, and gets out of 
control (violates unitarity) at about 1.7 TeV: σ(WW → WW) ∼ s 

• This is similar to “low” energy neutrino scattering: 
• If q2 << (MW)2, looks like a “contact                                  

interaction”, and cross-section grows                             
with center of mass energy: σ ∼ s 

• But when q2 ≈ (MW)2, W-boson                                             
propagation becomes visible, and “cures” this problem
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The Higgs Boson
❖ One way to solve WW, is to introduce a massive, 

spinless particle (of mass < ~1 TeV) 
- Couplings to W and Z are fixed, quantum numbers are 

known... 
- .... to be those of the vacuum 
- Its mass is unknown, and its couplings to the fermions 

are unknown....  well, maybe 
- Fermions can acquire mass by coupling to this Higgs boson, 

so their couplings could be proportional to their masses.  
This is called the “Standard Model Higgs”
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Precision Measurements
❖ In fact, we were able to say 

something about the 
standard model Higgs mass 
- If the fermions get their masses 

from the Higgs, we know all 
couplings and can infer the 
Higgs  mass from precision 
measurements 

- Result is very sensitive to 
measured top quark, W boson 
masses 
- Really wants a “light” Higgs boson
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Precision Measurements
❖ In fact, we were able to say 

something about the 
standard model Higgs mass 
- If the fermions get their masses 

from the Higgs, we know all 
couplings and can infer the 
Higgs  mass from precision 
measurements 

- Result is very sensitive to 
measured top quark, W boson 
masses 
- Really wants a “light” Higgs boson
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The Plot Thickens
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New Physics?
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Could this be it?
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Higgs Mass
❖ Higgs, in fact, also 

acquires mass from 
coupling to W’s, 
fermions, and itself! 
- These “mass terms” are 

quadratically divergent 
- Drive mass to limit of 

validity of the theory 

❖ So we expect the 
Higgs mass to be close 
to the scale where new 
physics comes in....  

19



Gustaaf Brooijmans CERN 2015

New Physics?
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Could this be it?
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New Physics?

21

Could this be it?
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Nevertheless
❖ Clear structure in fermionic 

sector unexplained 
- Evidence of some selective 

principle (why are there no 
neutral colored fermions?) 

- Proton stability, running of 
couplings suggestive of at 
least one other scale 
relevant to SM particles, 
~1015 GeV 
- Either fine-tuning, or a closer 

scale
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The Tools
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Colliders
❖ Currently, hadron colliders: 

- High energy implies probing 
of short distances, and 
production of other, massive 
particles
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7 - 14 TeV center of mass 
energy

VLHC
LHC
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Hadron Colliders
❖ Incoming longitudinal momentum not known:  

- “Hard interaction” is between one of the quarks and/or 
gluons from each proton, other quarks/gluons are 
“spectators” 

❖ Longitudinal boost “flattens” event to a pancake 
➡ We usually work in the plane transverse to the beam
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Detectors
❖ Make best possible measurement of all 

particles coming out of collisions
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CMS
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Tracking
❖ Combination of pixels, silicon strips (“SCT”) 

and straw tube transition radiation tracker (TRT)
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Calorimetry
❖ Liquid Argon & Pb accordion 

(EM & forward), crystals 
❖ Scintillator & Steel/copper/

tungsten (hadronic)
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Muons
❖ Air-core toroids/flux return; 

wire chambers and RPCs
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Neutrinos*
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*(100% acceptance)
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✓

✓✓
✓✓✓
✓

✓
✓ ✓ ✓

✓: Detect with high efficiency

✓: Detect by missing 
      transverse energy

✓
✓

✓

✓

✓: Detect through decays: t→Wb, W/Z → leptons, ...

✓

H125500

0

✓

Detecting Particles
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The Work

33
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Steps in a Physics Analysis
❖ What is the final state? ⇒ “Preselection” 

- For a search, sufficiently loose to be signal-poor 
- Prove you understand the detector response, physics 

processes contributing 

- But sufficiently tight to have a manageable data volume 
- ATLAS/CMS write 200-1000 Hz × 1+ MB/event = 0.2-1+ GB/s 

- “4-vectors” is not enough, need some amount of detector info 

- In practice, often have preselected sample for frequent analysis, 
+ looser sample for e.g. multijet background with rare passes 

❖ Note that data volume ∝ running time, not ∫L
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Steps (II)
❖ Determine preselected sample’s composition 

- MC and data to understand each contribution 
- QCD multijet background to leptons often extracted from data: 

rejection factor ~10-4, difficult for simulation to be that accurate 

- MC for most other processes, with corrections from data, since 
generators are LO, NLO, NNLO, LL, NLL, NNLL 

- Also need to correct MC for real-life data conditions 
- Different alignment, dead channels etc. 

- As statistics increase, more difficult, since mis-modelings 
not hidden by large statistical uncertainties anymore 
- Mis-modelings often show up in tails
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Anecdotes From the Field (I)
❖ Everybody wants experimenters to produce results 

fast 
- Lots of pressure in the early days of LHC...

36

Only jets, background easy
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Anecdotes From the Field (I)
❖ Everybody wants experimenters to produce results 

fast 
- Lots of pressure in the early days of LHC...
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GEANT bug
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Anecdotes From the Field (I)
❖ Everybody wants experimenters to produce results 

fast 
- Lots of pressure in the early days of LHC... 

- Sometimes, it’s better to take the appropriate time to 
investigate
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GEANT bug

Cosmics
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A Semi-Challenging Search: 
Higgs to τ µ
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❖ 20 fb-1 collected by end 2012 at 8 TeV

40

400000 events in direct production
can look for rare decays!

Producing Higgses
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Higgs Decay: 125 GeV is Golden

41

Low Mass
H → bb, ττ, γγ

High Mass
H → WW, ZZ
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µ+τ
❖ Indirect constraints fairly weak (as opposed to e.g. e+µ 

- Indirect: BR(µτ) < ~10%; BR(eµ) < ~10-8 

❖ Lepton Flavor remains a mystery 
- Observing LFV crucial in understanding origin 

- Know it exists in the neutrino sector 

❖ Experimentally: 
- With 400k Higgses produced,1% BR x efficiency yields 

4000 signal events 

- Two leptons ⇒ small to moderate background at hadron 
collider

42



Gustaaf Brooijmans CERN 2015

Tau decays
❖ Exploit two channels: 

- τ→eνν: BR = 18% 
- τ→hν: BR = 49% (one charged particle) + 15% 

(three charged particles) 
- Avoid Z → μμ background 

❖ Final states are μτe and μτh 
- Irreducible background is Z → ττ 
- Primary discriminating variable is μ-τ invariant mass 

- Unfortunately not directly reconstructible: neutrinos 
escape!
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Collinear Mass
❖ m(H) = 125 GeV, m(τ) = 1.8 GeV 

➡ Tau is heavily boosted 
➡ Tau decay products are collinear with tau 

❖ Under that assumption, know neutrino direction 
- From direction and missing transverse momentum infer neutrino longitudinal 

momentum

44

 CMS: arXiv:1502.07400

Preselection
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Categorize!
❖ Different production 

mechanism (gluon fusion vs. 
vector boson fusion) lead to 
different topologies 
- In practice number of jets 

❖ Different decay channels 
have different reducible 
backgrounds 
- Hadronic tau decays are low 

multiplicity jets 

❖ Categorize to exploit 
different S/B! 
- Assign corresponding 

weights (typically ln(1+S/B)), 
to increase sensitivity 
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Backgrounds
❖ Small signal ⇒ need very 

accurate background estimate 
- Use data where possible 

❖ In this case: 
- Z → ττ (irreducible): take Z → 

µµ events from data, replace 
one muon with simulated tau 

- Misidentified leptons: get 
control sample, and 
independently measure 
probability to fake e or τh, check 
in control region 

- Rest: simulation
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Finally
❖ Tighten cuts and look for signal 
❖ Don’t forget systematic 

uncertainties 
- Difficult topic: estimators often 

have known flaws, but “best we 
can do”
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Higgs Drawbacks
❖ So with the addition of a Higgs boson around 

125 GeV particle physics could be “complete” 
- Like Mendeleev’s table for chemistry, but not 

understood.  By itself, the Higgs is very 
unsatisfactory: 

- Why are the couplings to the fermions what they are? 
‣ Dumb luck (aka landscape)? 

- What is the link to gravity? 

- What about Dark Matter? 

- Why does the Higgs break the symmetry? 

- Why are there 3....?
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