Ab initio calculation of the neutron-proton mass difference

Laurent Lellouch

CPT Marseille CNRS & Aix-Marseille U.

Borsanyi, Dürr, Fodor, Hoelbling, Katz, Krieg, Lellouch, Lippert, Portelli, Szabo, Toth Budapest-Marseille-Wuppertal collaboration (BMWc)

(based mainly on Science 347 '15, PRL 111 '13, Science 322 '08)

Nucleon mass difference

Well known experimentally (PDG '14)

 $\Delta M_N = M_n - M_p$ = 1.2933322(4) MeV = 0.14% × M_N

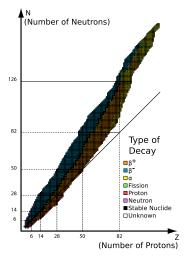
w/ $M_N = (M_n + M_p)/2$

Tiny but very important, e.g.

• required for stability of p and ¹H: If $M_p > M_n - m_e$ or $M_p > M_n + m_e$ $\Rightarrow p + e^- \rightarrow n + \nu_e$ or/and $\Rightarrow p \rightarrow n + e^+ + \nu_e$

 determines valley of stability through β-decay

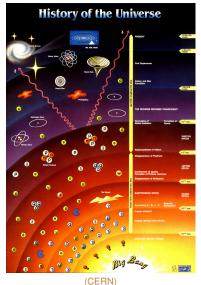
\rightarrow necessary to explain baryonic matter as we know it



(Wikipedia)

Importance in the early universe

Time of interest here: 1 μ s $\lesssim t \lesssim$ 3 min



 $egin{aligned} \mathcal{E}_eta = \Delta \mathcal{M}_N - \mathcal{m}_e - \mathcal{m}_{
u_e} = 0.08\% imes \mathcal{M}_N \ \downarrow \end{aligned}$

 $n \rightarrow p + e^- + \bar{\nu}_e$ in $\tau_n \sim 15 \min$

Critical for Big Bang nucleosynthesis (BBN)

If $\Delta M_N/M_N > 0.14\%$ and thus τ_n smaller

 \rightarrow *n* decay before trapped and preserved in nuclei

 \rightarrow easily get an universe without *n* !

If $0.14\% > \Delta M_N/M_N \gtrsim 0.05\%$

 $\rightarrow~$ much more $^{4}\mathrm{He}$ and less $^{1}\mathrm{H}$

If $\Delta M_{N}/M_{N} <$ 0.05%, $p+e^{-}
ightarrow n+
u_{e}$

→ universe w/ mostly n

 \rightarrow very finely tuned system

 \rightarrow goal: understand physics behind ΔM_N and similar phenomena

Isospin symmetry and its breaking

 $\Delta M_N/M_N \ll 1$ because Nature has a near SU(2)-isospin symmetry

$$\left(\begin{array}{c} u\\ d\end{array}\right) \longrightarrow \exp[i\vec{\theta}\cdot\frac{\vec{\tau}}{2}] \left(\begin{array}{c} u\\ d\end{array}\right)$$

Only broken by small, often competing effects

$$3 \, rac{m_d-m_u}{M_N} \sim 1\%$$
 and $(Q_u^2-Q_d^2)\,lpha \sim 1\%$

Isospin breaking also crucial role in many other places, e.g.:

- Knowledge of m_u and m_d, limited by EM (e.g. FLAG 13)
- Improving indirect search for new physics
 - → important flavor observables that are becoming very precisely known: e.g. $\operatorname{err}(m_{ud}), \operatorname{err}(m_s) \sim 2\%, \operatorname{err}(m_s/m_{ud}) \leq 1\%, \operatorname{err}(F_K) \sim 1\%, \operatorname{err}(F_K/F_\pi) \sim 0.5\%, \operatorname{err}(F_K^{+\pi}(0)) \sim 0.8\%$

Can compute perturbatively in $\alpha \& (m_d - m_u) \dots$ but mixing w/ nonperturbative QCD

- ⇒ nonperturbative QCD tool
- \Rightarrow include QED and $m_u \neq m_d$

What is lattice QCD (LQCD)?

To describe ordinary matter, QCD requires \geq 104 numbers at every point of spacetime $\rightarrow \infty$ number of numbers in our continuous spacetime

- \rightarrow must temporarily "simplify" the theory to be able to calculate (regularization)
- \Rightarrow Lattice gauge theory \longrightarrow mathematically sound definition of NP QCD:
 - UV (& IR) cutoff → well defined path integral in Euclidean spacetime:

$$\begin{array}{ll} \langle \boldsymbol{O} \rangle &=& \int \mathcal{D} \boldsymbol{U} \mathcal{D} \bar{\boldsymbol{\psi}} \mathcal{D} \boldsymbol{\psi} \ \boldsymbol{e}^{-S_G - \int \bar{\boldsymbol{\psi}} D[\boldsymbol{M}] \boldsymbol{\psi}} \ \boldsymbol{O}[\boldsymbol{U}, \boldsymbol{\psi}, \bar{\boldsymbol{\psi}}] \\ &=& \int \mathcal{D} \boldsymbol{U} \ \boldsymbol{e}^{-S_G} \det(\boldsymbol{D}[\boldsymbol{M}]) \ \boldsymbol{O}[\boldsymbol{U}]_{\text{Wick}} \end{array}$$

*D*Ue^{-S_G} det(D[M]) ≥ 0 & finite # of dofs
 → evaluate numerically using stochastic methods

 $T \downarrow_{\mu}(x) = e^{iagA_{\mu}(x)} \psi(x)$ $T \downarrow_{\mu}(x) = e^{iagA_{\mu}(x)} \psi(x)$

LQCD is QCD when $m_q \rightarrow m_q^{\text{phys}}$, $a \rightarrow 0$ (after renormalization), $L \rightarrow \infty$ (and stats $\rightarrow \infty$)

HUGE conceptual and numerical challenge

Challenges of a full lattice calculation

To make contact with experiment need:

- A valid approximation to the SM
 - \rightarrow at least u, d, s in the sea w/ $m_u = m_d \ll m_s (N_f=2+1)$
 - \rightarrow better also include $c (N_f=2+1+1) \& m_u \le m_d (N_f=4\times 1) \& \text{EM} (N_f=4\times 1 + \text{QED})$
- u & d w/ masses well w/in SU(2) chiral regime : $\sigma_{\chi} \sim (M_{\pi}/4\pi F_{\pi})^2$
 - $\rightarrow M_{\pi} \sim 135 \text{ MeV}$ or many $M_{\pi} \leq 400 \text{ MeV}$ w/ $M_{\pi}^{\min} < 200 \text{ MeV}$ for $M_{\pi} \rightarrow 135 \text{ MeV}$

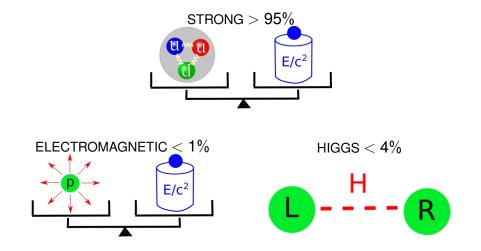
•
$$\mathbf{a} \rightarrow \mathbf{0}$$
: $\sigma_a \sim (a \Lambda_{\text{QCD}})^n$, $(a m_q)^n$, $(a |\vec{p}|)^n$ w/ $a^{-1} \sim 2 \div 4$ fm

- \rightarrow at least 3 *a*'s \leq 0.1 fm for *a* \rightarrow 0
- $\mathbf{L} \to \infty$: $\sigma_L \sim (M_{\pi}/4\pi F_{\pi})^2 \times e^{-LM_{\pi}}$ for stable hadron pties $\sim 1/L^n$ for resonances, QED, ... \rightarrow many L w/ $(LM_{\pi})^{max} \gtrsim 4$ for stable hadrons & better otherwise to allow for $L \to \infty$
- These requirements $\Rightarrow O(10^9)$ dofs that have to be integrated over
- Renormalization : best done nonperturbatively
- A signal : $\sigma_{\text{stat}} \sim 1/\sqrt{N_{\text{conf}}}$, reduce w/ $N_{\text{conf}} \rightarrow \infty$

Challenges of a full lattice calculation (cont'd)

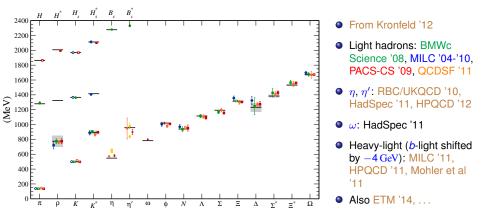
- If one or more of these ingredients are missing, calculation can only give qualitative results
- Difficulty: our algorithms typically loose effectiveness as the physical limit is approached
- Response: algorithmic and methodological improvements (Sexton et al '92, Hasenbusch '01, Urbach et al '06, Lüscher '04, Del Debbio et al '06, Lüscher '07, BMWc '08, Blum et al '12, Frommer et al '13, ...) and Pflop/s supercomputers
 - \Rightarrow possible to compute simple quantities w/ %-level accuracy
- Still need large # of large simulations over large range of parameters
 - ⇒ only a few full QCD calculations exist

Where does mass of ordinary matter come from?



Show how all three combine to give experimental $M_n - M_p$

Lattice QCD and the hadron spectrum



- ightarrow QCD mass generation mechanism checked at few % level
- $\rightarrow\,$ impressive validation of nonperturbative QCD

Including isospin breaking on the lattice

$$S_{
m QCD+QED} = S_{
m QCD+QED}^{
m iso} + rac{1}{2}(m_u - m_d)\int (\bar{u}u - \bar{d}d) + ie\int A_\mu j_\mu$$

with $j_\mu = \bar{q}Q\gamma_\mu q$

(1) operator insertion method

$$\langle \mathcal{O} \rangle_{\text{QCD+QED}} = \langle \mathcal{O} \rangle_{\text{QCD}}^{\text{iso}} - \underbrace{\frac{1}{2} (m_u - m_d) \langle \mathcal{O} \int (\bar{u}u - \bar{d}d) \rangle_{\text{QCD}}^{\text{iso}}}_{(a)} \\ + \underbrace{\frac{1}{2} e^2 \langle \mathcal{O} \int_{xy} j_{\mu}(x) D_{\mu\nu}(x - y) j_{\nu}(y) \rangle_{\text{QCD}}^{\text{iso}}}_{(b)} + \text{hot}$$

(2) direct method

Include $m_u \neq m_d$ and QED directly in simulation

Including isospin breaking on the lattice (cont'd)

What has been done:

- $m_u \neq m_d$ in valence only (MILC '09, Blum et al '10, Laiho et al '11, QCDSF/UKQCD '12, BMWc '10-, ...)
 - no new simulations
 - × error of $O(\alpha) \Rightarrow$ use phenomenology
- (a) (RM123 '12) and (b) (RM123 '13) of operator insertion method tried w/out quark-disconnected contributions
 - no new simulations
 - × error of $O(\alpha(m_s m_{ud})/(N_c M_{QCD}))$
- QED & $m_u \neq m_d$ in valence only (Eichten et al '97, Blum et al '07, '10, BMWc '10-, MILC '10-)
 - no new simulations
 - × error of $O(\alpha(m_s m_{ud})/(N_c M_{QCD}))$
- QED (Blum et al '12) & $m_u \neq m_d$ (PACS-CS '12) in sea w/ reweighting
 - \checkmark as good as full simulation
 - × exponentially expensive in the volume
 - $\times~$ only tried w/ low statistics in a single simulation \rightarrow not very conclusive

Borsanyi et al (BMWc), Science 347 (2015)

First full QCD + QED calculation w/ non-degenerate u, d, s, c quarks

• 41 large statistics simulations with $m_u \neq m_d$

 \rightarrow 41 m_u , m_d , m_s , m_c combinations w/ pion masses $M_{\pi} = 195 \nearrow 420 \text{ MeV}$ (sufficient for light hadron masses cf. Science '08)

- 5 values of $e = 0 \nearrow 1.4$ (physical ~ 0.3)
- 4 lattice spacings $a = 0.06 \nearrow 0.10 \text{ fm}$
- 11 volumes w/ $L = 2.1 \nearrow 8.2 \, \text{fm}$

 \rightarrow fully controlled calculation of per mil, $M_n - M_p$ effect w/ total error < 20%

QCD+QED challenges

In addition to usual challenges:

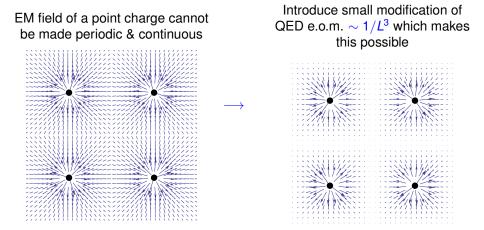
- formulate QED in a finite box (long-range interactions)
 - \rightarrow photon zero mode subtraction (Hayakawa et al '08, BMWc '14)
- subtract large finite-volume effects ("soft" photons)

 → new low-E theorem (BMWc '14, Davoudi et al '14): leading 1/L and 1/L² depend only on particle charge and mass w/ known coefficients
 → pure QED simulations to check
- consistently renormalize QCD+QED theory on the lattice
 → renormalize α using Wilson flow (BMWc '14, Lüscher '10)
- avoid unwanted phase transitions of lattice QED
 → use non-compact formulation (Duncan et al '96)
- fight large autocorrelations of QED field
 → Fourier accelerated algorithm (BMWc '14)
- fight large noise/signal ratio
 - \rightarrow larger than physical *e* (Duncan et al '96)

- finding asymptotic time-range for hadron mass extractions
 → method based on Kolmogorov-Smirnov test (BMWc '14)
- robust estimation of systematic errors
 - \rightarrow improve Science '08 method using Akaike information criterion (BMWc '14)
 - \rightarrow 4 fully independent analyses including a blind one
- unprecedented precision required (~ ×1000 more statistics for △M_N than for M_N while Moore's law only gives ~ ×5)
 → O(10k) trajectories/ensemble, O(500) sources/configuration, using 2-level multigrid inverter (Frommer et al '13) and variance reduction technique (Blum et al '13)

49pp appendix summarizing and validating theoretically and numerically all of these new methods (arXiv:1406.4088)

QED in finite volume



Induces finite-volume effects ~ α/L that must be subtracted
 → small on QCD quantities but significant for isospin splittings

Finite-volume QED and zero-mode problem

A $T \times L^3$ spacetime with periodic BCs has the topology of a four-torus On four-torus **zero mode**, $\tilde{A}_{\mu}(k = 0)$, of photon field is troublesome:

• usual perturbative calculations are not well defined

HMC algorithm is ineffective in updating the zero mode

Problem can be solved by removing zero mode(s)

- \rightarrow modification of $\tilde{A}_{\mu}(k)$ on set of measure zero
- $\rightarrow\,$ does not change infinite-volume physics
- $\rightarrow\,$ physically equivalent to adding a canceling uniform charge distribution
 - $\bullet\,$ different schemes $\rightarrow\,$ different finite-volume behaviors
 - some schemes more interesting than others

QED_{TL} zero-mode subtraction

- Set $\tilde{A}_{\mu}(k=0) = 0$ on $T \times L^3$ four-torus (Duncan et al '96)
- Used in most previous studies
- Violates reflection positivity!
 - \rightarrow no hermitian Hamiltonian, states w/ non-positive norm
 - \rightarrow divergences when L fixed, T $\rightarrow \infty$

$$\frac{\alpha}{TL^3} \sum_{k \neq 0} \frac{1}{k^2} \cdots \qquad \xrightarrow[T \to +\infty, L \text{ fixed}} \qquad \alpha \int \frac{dk_0}{2\pi} \frac{1}{L^3} \sum_{\vec{k}} \frac{1}{k^2} \cdots$$

Checked analytically in 1-loop spinor (also scalar) QED calculation

$$m(T,L) = \max_{T,L\to+\infty} m\left\{1 - q^2\alpha \left[\frac{\kappa}{2mL}\left(1 + \frac{2}{mL}\left[1 - \frac{\pi}{2\kappa}\frac{T}{L}\right]\right) - \frac{3\pi}{(mL)^3}\left[1 - \frac{\coth(mT)}{2}\right] - \frac{3\pi}{2(mL)^4}\frac{L}{T}\right]\right\}$$

with $\kappa = 2.837 \cdots$, up to exponentially-suppressed corrections

QED_L zero-mode subtraction

- Set $\tilde{A}_{\mu}(k_0, \vec{k} = 0) = 0$ on $T \times L^3$ four-torus for all $k_0 = 2\pi n_0/T$, $n_0 \in \mathbb{Z}$
- Used here (orginally suggested in Hayakawa & Uno '08)
- Satisfies reflection positivity
 - \rightarrow fixing to Coulomb gauge, $\vec{\nabla}\cdot\vec{A}=0,$ ensures existence of Hamiltonian
 - \rightarrow well defined asymptotic states
 - \rightarrow well defined $T, L \rightarrow \infty$ limit

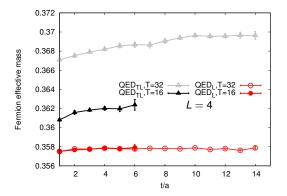
Checked analytically in 1-loop spinor (and scalar) QED calculation

$$m(T,L) \underset{T,L\to+\infty}{\sim} m\left\{1-q^2\alpha\left[\frac{\kappa}{2mL}\left(1+\frac{2}{mL}\right)-\frac{3\pi}{(mL)^3}\right]\right\}$$

with $\kappa = 2.837 \cdots$, up to exponentially-suppressed corrections \Rightarrow only inverse powers of *L* and no powers in *T*

QED_{TL} vs QED_L : numerical tests

Numerical studies in pure spinor QED (w/out QCD, $e = \sqrt{4\pi/137}$, am = 0.4, L/a = 4)



QED_{TL}, as expected, has:

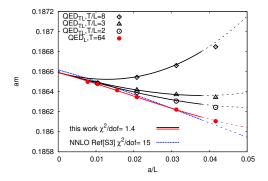
- no clear mass plateaux
- mass increases w/ T

As predicted, QED_L has none of these problems:

- ground state dominates at large t/a
- T-independent mass

QED_{TL} vs QED_L : numerical tests

Test pure QED simulations against our 1-loop finite-volume predictions (w/out QCD, $e = \sqrt{4\pi/137}$, am = 0.2, L/a = 24, \cdots , 128)



- Excellent agreement
- Both schemes give the same result in infinite volume
- QED_L cleaner and has more controlled infinite-volume limit
- Resolve discrepancy w/ Davoudi et al '14 on 1/L³ term in our favor, numerically here and analytically in Fodor et al, arXiv:1502.06921

QED_L finite-volume effects for composite particles

In our point spinor and scalar QED_L calculations find

$$m(T,L) \underset{T,L\to+\infty}{\sim} m\left\{1-q^2\alpha\frac{\kappa}{2mL}\left[1+\frac{2}{mL}\right]+\mathcal{O}(\frac{\alpha}{L^3})\right\}$$

independent of particle spin (w/ $\kappa = 2.837 \cdots$)

Same result found for:

- Mesons in SU(3) PQ χPT (Hayakawa et al '08)
- Mesons/baryons in non-relativistic EFT (Davoudi et al '14)

\rightarrow leading 1/L and 1/L² terms independent of particle spin and structure?

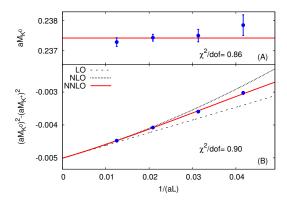
For a general field theory, this universality follows from Ward identities (BMWc '14), using Lüscher '86 and assuming:

- the photon is the only massless asymptotic state
- the charged particle considered is stable and non-degenerate in mass

\rightarrow leading FV effects can be removed analytically

FV effects in kaon masses

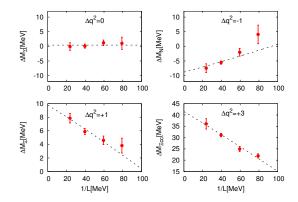
Dedicated FV study w/ $L = 2.4 \nearrow 8.2 \text{ fm}$ and other parameters fixed (bare $\alpha \sim 1/10$, $M_{\pi} = 290 \text{ MeV}$, $M_{K^0} = 450 \text{ MeV}$, a = 0.102 fm)



- M_{K^0} has no significant volume dependence
- $M_{K^0}^2 M_{K^+}^2$ well described by universal 1/L, 1/L² and fitted 1/L³ terms

FV effects in baryon masses

Dedicated FV study w/ $L = 2.4 \nearrow 8.2 \text{ fm}$ and other parameters fixed (bare $\alpha \sim 1/10$, $M_{\pi} = 290 \text{ MeV}$, $M_{K^0} = 450 \text{ MeV}$, a = 0.102 fm)



ΔM_Σ = M_{Σ⁺} − M_{Σ⁻} shows no volume dependence (Δq² = 0)
 Strategy: fix universal 1/L, 1/L² terms and add 1/L³ if required

How to fix α to its physical value?

- Simulation done in terms of α_{bare}: what is α_{ren}?
- Use "Wilson" flow (Lüscher '10) (discretized version of):

 $\frac{\partial B_{\mu}(\tau; x)}{\partial \tau} = -\frac{\delta S[B]}{\delta B_{\mu}(\tau; x)}, \qquad E(\tau) = e_0^2 \tau^2 \langle F_{\mu\nu}^{(B)}(\tau; x) F_{\mu\nu}^{(B)}(\tau; x) \rangle$ w/ $B_{\mu}(\tau = 0; x) = A_{\mu}(x)$

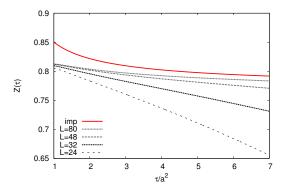
• Have: $E(\tau) = \frac{3\alpha_{\text{ren}}}{8\pi} \left\{ 1 + \alpha_{\text{ren}} f(\tau) + O(\alpha_{\text{ren}}^2) \right\} \xrightarrow{\tau \to \infty} \frac{3\alpha_{\text{ren}}}{8\pi}$

finite for au > 0 w/ $lpha_{\rm ren}$ the fine structure cst in the Thomson limit

- Define: $\alpha_{ren}(\tau) = Z(\tau)\alpha_{bare}$ w/ $Z(\tau) = E(\tau)/E_{LO}(\tau)$
- Can correct sizeable FV effects by considering $E_{LO}(\tau)$ on FV lattice
- Choose renormalization scale $(8\tau)^{-1/2} \simeq 280 \nearrow 525 \,\text{MeV}$ and match $\alpha_{\text{ren}}(\tau)$ to Thomson limit at physical value of α_{ren}

Running of $\alpha_{ren}(\tau)$

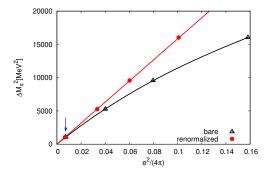
Dedicated FV study w/ $L = 2.4 \nearrow 8.2 \text{ fm}$ and other parameters fixed (bare $\alpha \sim 1/10$, $M_{\pi} = 290 \text{ MeV}$, $M_{K^0} = 450 \text{ MeV}$, a = 0.102 fm)



- Volume dependence corrected by FV $E_{LO}(\tau)$
- Smooth approach to Thomson limit

Interpolation to physical α_{ren}

Dedicated study with $\alpha_{\text{bare}} \in [1/137, 0.16]$ and fixed $M_{\pi} = 290 \text{ MeV}$, a = 0.102 fm on $32^3 \times 64$ lattices ($(8\tau)^{-1/2} = 400 \text{ MeV}$)



• $\Delta M_{\pi}^2 = M_{\pi^+}^2 - M_{\pi^0}^2$ is not linear in α_{bare}

- Becomes so in terms of $\alpha_{ren}(\tau)$ renormalized around scale of processes involved
- \Rightarrow simulate for 5 values $\alpha_{\text{bare}} \in [0, 0.16]$
- \Rightarrow interpolate linearly in $\alpha_{ren}(\tau)$ to physical value

Sketch of analysis

Mass splittings on 41 ensembles modeled by

 $\Delta M_{X} = F_{X}(M_{\pi^{+}}, M_{K^{0}}, M_{D^{0}}, L, a) \cdot \alpha_{\text{ren}} + G_{X}(M_{\pi^{+}}, M_{K^{0}}, M_{D^{0}}, a) \cdot \Delta M_{K}^{2}$

- F_X , G_X parametrize m_{ud} , m_s , m_c , , L and a dependences
- Results at physical point obtained by setting M_{π^+} , M_{K^0} , M_{D^0} to their physical values, $L \to \infty$ and $a \to 0$, w/ a determined by M_{Ω^-}
- Central value and systematic error estimation
 - Carry out O(500) equally plausible analyses, differing in time-fit ranges for M_X determinations, functional forms for F_X, G_X, ...
 - Use Akaike information criterion

$$AIC = \chi^2_{\min} + 2k$$

Weight different analyses w/

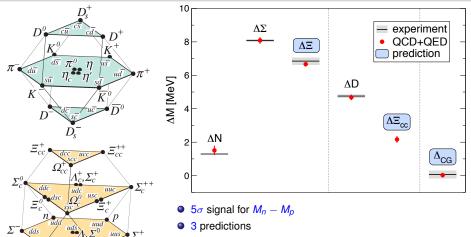
$$exp[-(AIC - AIC_{min})/2]$$

- central value = weighted mean, syst. error = (weighted variance)^{1/2}
- Final results with other weights or median and distribution width consistent
- Blind analysis gave consistent results too
- Statistical error from variance of central values from 2000 bootstrap samples

Results for isospin mass splittings

Ē

(PDG '14)



• $\Delta_{CG} = \Delta N - \Delta \Sigma + \Delta \Xi = O(\alpha(m_s - m_{ud})), \delta m(m_s - m_{ud})^2)$ (Coleman-Glashow relation)

• Full calculation: all systematics are estimated

Strong + Higgs + Electromagnetism = Experiment

Separation of QED and $(m_d - m_u)$ contributions

• At LO in α and $\delta m \equiv (m_d - m_u)$ can separate

 $\Delta M_X = \Delta_{\rm QED} M_X + \Delta_{\rm QCD} M_X$

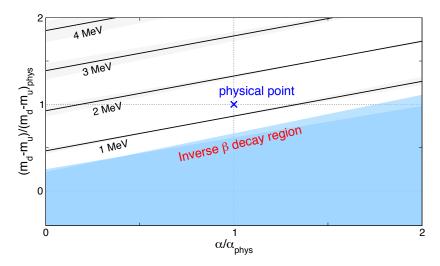
w/ first term $\propto \alpha$ and second $\propto \delta m$

- Intrinsic scheme ambiguity of $O(\alpha \delta m, \alpha^2, \delta m^2, \alpha m_{ud})$
- ΔM_{Σ} largely dominated by δm contribution
 - \rightarrow use $\Delta M_{\Sigma} \equiv 0$ to define $m_d = m_u$ point
 - \rightarrow sufficient for current level of precision

	mass splitting [MeV]	QCD [MeV]	QED [MeV]
$\Delta N = n - p$	1.51(16)(23)	2.52(17)(24)	-1.00(07)(14)
$\Delta\Sigma=\Sigma^{-}-\Sigma^{+}$	8.09(16)(11)	8.09(16)(11)	0
$\Delta \Xi = \Xi^ \Xi^0$	6.66(11)(09)	5.53(17)(17)	1.14(16)(09)
$\Delta D = D^{\pm} - D^0$	4.68(10)(13)	2.54(08)(10)	2.14(11)(07)
$\Delta \Xi_{cc} = \Xi_{cc}^{++} - \Xi_{cc}^+$	2.16(11)(17)	-2.53(11)(06)	4.69(10)(17)
$\Delta_{\rm CG} = \Delta N - \Delta \Sigma + \Delta \Xi$	0.00(11)(06)	-0.00(13)(05)	0.00(06)(02)

Quantitative anthropics

Beginning of first principle answer to: what would the universe be made of if fundamental constants were different?



Conclusions

- Have now a good theoretical understanding of QCD+QED on a finite lattice
- Powerful theorem determines coefficients of leading 1/L and 1/L² finite-volume (FV) corrections

 \Rightarrow large QED FV effects can be extrapolated away reliably and precisely

- Have all of the algorithms required to reliably simulate QCD+QED
- Our QCD+QED simulations w/ u, d, s, c sea quarks and $m_u \neq m_d$

 \rightarrow full description low-energy standard model w/ theoretical precision of $O(\alpha^2, 1/N_c m_b^2) \sim 10^{-3}$

 \rightarrow increase in accuracy $\sim \times 10$ compared to state-of-the-art $N_f = 2 + 1$ simulations with intrinsic errors of $O(\alpha, \delta m, 1/N_c m_c^2) \sim 10^{-2}$

- Isosplittings in hadron spectrum determined accurately w/ full control over uncertainties
- Confirm: Strong + Higgs + Electromagnetism = Experiment
- Make first principle anthropics possible

- Fully controlled computation of the *u* & *d* quark masses
- Isospin corrections to hadronic matrix elements (e.g. $K_{\ell_2}, K_{\ell_3}, K \to \pi\pi, ...$)

 \rightarrow bring indirect search for new physics to new level

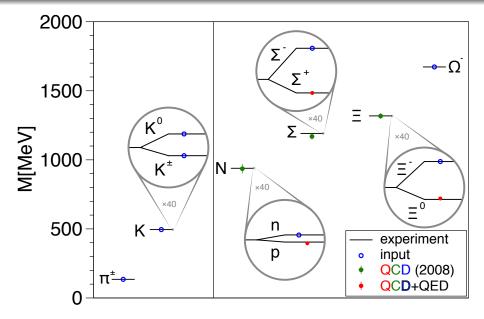
 QCD+QED to compute hadronic corrections to anomalous magnetic moment of the μ, a_μ = (g_μ - 2)/2

 \rightarrow currently > 3 σ deviation between SM and experiment w/ \sim matched errors

 \rightarrow need to bring SM calculation to new level in view of new experiments $~\gtrsim 2017$ that will reduce error by 4

• . . .

Progess since 2008



Practical application

(Sivan)

Practical application (cont'd)

(PCE)